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Аннотация
Необходимость разработки новых подходов для диагностики, лечения и профилактики сердечно-сосудистых забо-
леваний (CCЗ), ассоциированных с метаболическим синдромом и ожирением, ставит перед фундаментальной на-
укой задачу по поиску эффективных соединений для патогенетически обоснованной коррекции возникающих нару-
шений. По мере того как появляется все больше сведений о механизмах, лежащих в основе патогенеза ССЗ, особое 
внимание уделяется роли периваскулярной жировой ткани (ПВЖТ) в поддержании гомеостаза сердечно-сосудистой 
системы. ПВЖТ представляет собой метаболически активный эндокринный элемент, способный регулировать тонус 
кровеносных сосудов, функцию эндотелия, рост и пролиферацию сосудистых гладкомышечных клеток. Однако при 
метаболической патологии происходит нарушение функциональной активности клеточных элементов ПВЖТ и балан-
са продуцируемых ими вазоактивных веществ, что способствует возникновению и прогрессированию ССЗ. В обзоре 
систематизированы данные о морфофункциональных изменениях ПВЖТ при метаболическом синдроме и ожирении, 
рассмотрена проблема дисфункции ПВЖТ как патогенетического фактора сердечно-сосудистой патологии, проанали-
зированы существующие сведения о газовом трансмиттере сероводороде (H2S), продуцируемом ПВЖТ, как перспек-
тивном вазорегуляторном агенте.
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Abstract
The development of novel strategies for diagnosing, treating, and preventing cardiovascular diseases (CVDs) linked to 
metabolic syndrome and obesity presents a significant challenge for the scientific community. There is a pressing need to 
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Введение
Сердечно-сосудистые заболевания (ССЗ) по-прежне-

му занимают лидирующую позицию как основная причина 
смертности трудоспособного населения во всем мире [1]. 
Нездоровое высококалорийное питание, отсутствие фи-
зической активности, вредные привычки являются наибо-
лее важными поведенческими факторами риска сердеч-
но-сосудистых катастроф [2]. По мере того как появляется 
все больше сведений о механизмах, лежащих в основе 
ССЗ, особое внимание уделяется роли периваскулярной 
жировой ткани (ПВЖТ) в поддержании гомеостаза сердеч-
но-сосудистой системы [3–4]. ПВЖТ представляет собой 
специализированный тип жировой ткани, которая окружа-
ет большинство кровеносных сосудов у млекопитающих. 
ПВЖТ является метаболически активным эндокринным 
элементом, способным регулировать тонус кровеносных 
сосудов, функцию эндотелия, рост и пролиферацию сосу-
дистых гладкомышечных клеток (ГМК) [5–6]. 

В контексте регуляции сосудистого тонуса в физиоло-
гических условиях ПВЖТ оказывает мощный вазорелакси-
рующий эффект, высвобождая большое количество таких 
вазоактивных веществ, как оксид азота (NO), сероводород 
(H2S), пероксид водорода (H2O2), простациклин, метило-
вый эфир пальмитиновой кислоты, ангиотензин 1-7, ади-
понектин, лептин и оментин [7]. Однако при различных 
патологических состояниях, в т. ч. при нарушении обмена 
веществ, функциональная активность ПВЖТ изменяется, 
что сопровождается снижением продукции вазорелаксиру-
ющих и увеличением наработки сократительных факторов, 
включая супероксид-анион, ангиотензин II, катехоламины, 
простагландины, хемерин, резистин и висфатин [8–9].

Дисфункция клеточных элементов ПВЖТ приводит к 
структурным изменениям сосудистой стенки и, как след-
ствие, прогрессированию ССЗ. Необходимость разработки 
новых подходов для диагностики, лечения и профилакти-
ки CCЗ, ассоциированных с метаболическим синдромом и 
ожирением, ставит перед фундаментальной наукой зада-
чу по поиску эффективных соединений для патогенетиче-
ски обоснованной коррекции возникающих нарушений. В 
качестве одного из перспективных соединений, претенду-
ющих на роль фармакологического агента с высоким тера-
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певтическим потенциалом, исследователи рассматривают 
газотрансмиттер H2S, принимая во внимание его значимое 
влияние на клеточный гомеостаз.

Цель обзора: обсуждение и анализ современных ли-
тературных данных, отражающих особенности дисфунк-
ции и секреторного профиля ПВЖТ при метаболическом 
синдроме и ожирении, а также вазорегуляторной роли 
H2S, продуцируемого ПВЖТ, в патогенезе сердечно-сосу-
дистой патологии.

При подготовке обзора были использованы следую-
щие полнотекстовые и библиографическо-реферативные 
базы данных: Национальной медицинской библиотеки 
США (PubMed, Medline); научной электронной библио-
теки eLIBRARY.RU; научной электронной библиотеки Ки-
берЛенинка (cyberleninka.ru); электронно-библиотечной 
системы Book-Up; Национальной электронной библиоте-
ки (rusneb.ru). Поиск источников первичной информации 
осуществлялся на глубину 10 лет (2014–2024 гг.).

Периваскулярная жировая ткань  
при метаболическом синдроме и ожирении

Известно, что при определенных патологических со-
стояниях, таких как ожирение, артериальная гипертензия 
или сахарный диабет, ПВЖТ значительно снижает свое 
вазорелаксирующее действие и может даже усиливать 
сокращение кровеносных сосудов, приводя к нарушени-
ям кардиометаболического гомеостаза [7, 10]. Установ-
лено, что вазорелаксирующий эффект ПВЖТ полностью 
устранялся или значительно снижался в мышиной моде-
ли ожирения, вызванного диетой, а также в генетической 
модели метаболического синдрома у мышей. Вызванная 
ожирением дисфункция ПВЖТ коррелировала с повыше-
нием артериального давления у грызунов в модели ди-
ет-индуцированного ожирения [9]. У мышей с нокаутом 
гена эндотелиальной NO-синтазы (eNOS), получавших 
диету с высоким содержанием жиров, наблюдалось раз-
витие артериальной гипертензии, значительное повыше-
ние экспрессии маркеров воспаления и гипоксии в ПВЖТ, 
а также сывороточного хемерина [11]. 

Повышение концентрации хемерина при ожире-
нии в последнее время рассматривается как важный  
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прогностический маркер сосудистой дисфункции. Кон-
стрикторный эффект ПВЖТ, по-видимому, опосредован 
усилением продукции сократительных факторов, в том 
числе супероксид-аниона, катехоламинов, простагланди-
нов, ангиотензина II [12]. Так, через рецептор Ang II типа 1 
(AT1R) ангиотензин II усиливает реакции окислительного 
стресса и снижает биодоступность NO путем подавления 
активности эндотелиальной NO-синтазы (eNOS) в сосу-
дистых эндотелиальных клетках. Кроме того, известно, 
что ангиотензин II способствует выработке вазоконстрик-
торов, в том числе производных эндотелина-1 и циклоок-
сигеназы-1, которые индуцируют окислительный стресс и 
нарушают функцию эндотелия сосудов.

Также было установлено, что кратковременная диета 
с высоким содержанием жиров, на которой находились 
лабораторные мыши в течение 2  нед., приводила к за-
метному повышению в крови уровня провоспалитель-
ного адипокина лептина и хемокина CCL3 и, напротив, к 
снижению экспрессии противовоспалительного рецепто-
ра, активируемого пролифераторами пероксисом гамма 
(PPARγ), и адипонектина [13]. K.E. Zaborska и соавт. про-
демонстрировали, что ожирение приводит к разобщению 
eNOS и снижению биодоступности NO из-за дефицита 
L-аргинина [14]. Также было установлено, что у мышей 
диета с высоким содержанием жиров способствует раз-
витию воспаления в ПВЖТ, снижает фосфорилирование 
AMP-зависимой протеинкиназы (AMPK) и ослабляет ва-
зорелаксирующий эффект ПВЖТ грудной аорты [12].

Хроническое системное воспаление, формирующе-
еся при метаболическом синдроме и ожирении, способ-
ствует существенному изменению клеточного состава 
ПВЖТ, в частности, повышению количества макрофагов 
[15]. Инфильтрация макрофагами ПВЖТ у мышей, полу-
чавших диету с высоким содержанием жиров, приводи-
ла к усилению воспалительной реакции и повышению 
активности НАДФН-оксидазы – основного источника су-
пероксидного аниона, а также к снижению экспрессии 
супероксиддисмутазы и глутатиона в мезентериальной 
ПВЖТ [16]. Гиперактивация регуляторных Т-клеток и ма-
крофагов типа М2 в грудной и мезентериальной ПВЖТ 
наблюдалась у гипертензивных крыс, получавших высо-
кокалорийный рацион [17].

Установлено, что нарушения вазорелаксантной функ-
ции ПВЖТ при ожирении напрямую связаны с усилением 
воспаления и повышением активности реакций окисли-
тельного стресса [11]. Так, у мышей, получавших высокожи-
ровую диету, наблюдалась гипертрофия ПВЖТ брюшной 
аорты. Было выявлено нарушение эндотелий-зависимой 
вазодилатации брюшной аорты, а также повышение кон-
центрации супероксид-аниона и пероксида в крови. Кроме 
того, было зарегистрировано снижение экспрессии супе-
роксиддисмутазы и глутатиона в мезентериальной ПВЖТ. 
Следует отметить, что взаимосвязь между провоспали-
тельной активностью макрофагов, редокс-статусом клеток 
ПВЖТ и нарушением вазорелаксации до конца не изучена. 
Нельзя также исключать и инверсию реакции сосудистых 
клеток на вазоактивные стимулы. 

Как и большинство клеток организма, элементы 
ПВЖТ продуцируют и высвобождают во внеклеточное 
пространство везикулы (экзосомы), которые могут пе-
редавать паракринные сигналы от ПВЖТ к сосудистым 
клеткам через содержащиеся в них микроРНК [18]. По-
казано, что у мышей с ожирением секретируются раз-
личные микроРНК, связанные с воспалением в ПВЖТ, 
которые способствуют переключению фенотипа сосуди-
стых гладких мышц с сократительного на синтетический 
[5, 19]. Особый интерес представляют экзосомальные 
микроРНК адипоцитарного происхождения, которые 
препятствуют негативному влиянию факторов метабо-
лического синдрома на сердечно-сосудистую систему 
[18] (рис. 1). МикроРНК-221-3p идентифицирована как 
микроРНК с повышенным уровнем экспрессии, которая 
чаще всего встречается в воспаленных тканях при ожи-
рении. Показано, что гиперэкспрессия микроРНК-221-3p 
резко усиливает пролиферацию сосудистых ГМК [19]. В 
исследованиях C.S. Balbino-Silva и соавт. выявлено, что 
удаление микроРНК-22 способствовало восстановлению 
вазорелаксирующего эффекта ПВЖТ за счет усиления 
экспрессии eNOS в ПВЖТ у мышей на фоне высокожи-
ровой диеты [20]. Мимик микроРНК-378a-3p индуцировал 
метаболическое перепрограммирование мезенхималь-
ных стволовых клеток, полученных из ПВЖТ, путем уси-
ления их митохондриального потенциала и направления 
дифференцировки в сторону ГМК.

Рис. 1. Роль экзосомальных микроРНК, продуцируемых адипоцитами периваскулярной жировой ткани, в регуляции сосудистого гомеостаза [18]
Fig. 1. The role of exosomal microRNAs produced by PVAT adipocytes in the regulation of vascular homeostasis [18]
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Установлено, что микроРНК-181b оказывала противо-
воспалительное действие, усиливала выработку eNOS и 
предотвращала эндотелиальную дисфункцию у мышей с 
ожирением [21]. Однако точный механизм, посредством 
которого экзосомальные микроРНК адипоцитов влияют 
на функцию эндотелия или соседних адипоцитов, оста-
ется неясным. Имеются сведения, что при гипертонии, 
ассоциированной с ожирением, наблюдается увеличение 
концентрации микроРНК-214 в ПВЖТ, которое происхо-
дит главным образом за счет секреторной активности 
Т-лимфоцитов, инфильтрирующих сосуд. Установлено, 
что экспрессия микроРНК-214 напрямую коррелирует с 
развитием периваскулярного фиброза и дисфункцией эн-
дотелия [22].

В недавних исследованиях представлены прямые 
доказательства критической роли экзосомальных ми-
кроРНК ПВЖТ в регуляции фенотипической модифи-
кации макрофагов при воспалении, ассоциированном 
с метаболическими нарушениями. Были выявлены 
специфические микроРНК, участвующие в поляризации 
макрофагов ПВЖТ. Так, показано, что микроРНК-155, 
144-3p и 9-5p способствуют провоспалительной поляри-
зации M1-макрофагов [23]. Напротив, микроРНК-124-3p, 
125b-5p, 223, 34a, 30 и 146a индуцируют противовоспа-
лительную поляризацию М2-макрофагов [24]. Как пре- 
адипоциты, так и макрофаги, находящиеся в ПВЖТ, мо-
гут активировать секрецию микроРНК и, влияя на мор-
фофункциональный статус эндотелиальных и гладко-
мышечных клеток, вызывать нарушения тонуса сосудов 
[25]. В связи с тем, что микроРНК получили признание в 
качестве потенциальных биомаркеров различных забо-
леваний, в настоящее время актуальность представля-
ют исследования сложных механизмов, посредством ко-

торых микроРНК, экспрессируемые в ПВЖТ, влияют на 
различные типы клеток сосудистой системы и участвуют 
в патогенезе ССЗ.

Сероводород как системный регулятор обмена 
веществ и сосудистого гомеостаза

Газотрансмиттеры представляют собой небольшие 
молекулы эндогенного газа, которые обладают способно-
стью диффундировать в клетки для взаимодействия со 
своими мишенями и индуцировать ряд внутриклеточных 
реакций сигнальной трансдукции [26, 27]. Ввиду высо-
кой растворимости в липидах для проникновения через 
клеточные мембраны газотрансмиттерам не требуется 
взаимодействие с рецепторами плазматической мембра-
ны, равно как и участие специального переносчика для 
передачи сигнала. Как было описано выше, ПВЖТ в ка-
честве релаксирующих факторов продуцирует газотранс-
миттеры – NO и H2S. Несмотря на то, что H2S был ранее 
известен как токсичный газ, многочисленные эксперимен-
тальные исследования показывают, что он производится 
ферментативно во многих клетках организма животных и 
человека, а также опосредует ряд таких физиологических 
функций, как регуляция сосудистого тонуса, ангиогенез 
[28], нейротрансмиссия [29, 30], продукция инсулина [27], 
участвует в процессах липолиза и адипогенеза [31], апоп-
тоза, развитии воспаления [32].

Известно, что H2S в организме человека и живот-
ных синтезируется двумя цитозольными ферментами – 
цистатионин-γ-лиазой (CSE) и цистатионин-β-синтазой 
(CBS), а также одним митохондриальным ферментом – 
3-меркаптопируватсеротрансферазой (3MST), с исполь-
зованием общего субстрата, аминокислоты L-цистеина 
[33] (рис. 2). 

Рис. 2. Схематическое изображение 
биосинтеза H2S [33]
Fig. 2. Schematic presentation of H2S 
biosynthesis [33]

Неферментативная генерация H2S происходит в 
присутствии восстановленных эквивалентов, таких как 
НАДФН и НАДН, активных форм серы в персульфидах, 
тиосульфате и полисульфидах, которые восстанавлива-
ются до H2S, и других метаболитов [34]. Что касается про-
цесса деградации H2S, то он может идти разными путями. 

Поскольку H2S является восстановителем и часто потре-
бляется окислительными факторами, присутствующими 
во многих тканях, то, вероятно, основной путь катаболиз-
ма H2S представлен его окислением в митохондриях, где 
он быстро превращается в сульфитные и сульфатные 
формы [35]. 
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Результаты многих исследований свидетельствуют о 
том, что H2S участвует в регуляции углеводного и липид-
ного обменов, нарушение которых играет важную роль 
в развитии и прогрессировании ССЗ. В частности было 
показано, что H2S, продуцируемый жировыми клетками, 
влияет на их чувствительность к инсулину за счет повы-
шения экспрессии белка субстрата инсулинового рецеп-
тора 1 (IRS-1) в адипоцитах, а ингибирование экспрессии 
CSE снижало индуцированную TNFα резистентность к 
инсулину в адипоцитах [36]. Однако весь комплекс меха-
низмов, посредством которых H2S влияет на чувствитель-
ность адипоцитов к инсулину, к настоящему времени не 
установлен, что определяет актуальность исследований, 
проводимых в данной области.

Было установлено, что H2S регулирует адипогенез 
посредством посттрансляционной модификации белков, 
участвующих в данном процессе [27]. В эксперименте по-
казано, что введение экзогенных доноров H2S (GYY4137 
в сочетании с NaHS) способствовало экспрессии генов 
адипогенеза (ADIPOQ, PPARG, SLC2A4, CIDEA и FASN) в 
жировой ткани и приводило к адипогенной дифференци-
ровке преадипоцитов [37]. Y. Ding и соавт. [38] продемон-
стрировали, что H2S может напрямую модифицировать 
белок перлипин-1 (plin-1), непосредственно участвующий 
в липолизе и регулирующий транслокацию гормон-чув-

ствительной липазы – фермента, ответственного за ги-
дролиз триацилглицеролов. Действительно, донор H2S 
(GYY4137) индуцировал посттрансляционную модифика-
цию plin-1, вызывая нарушение его фосфорилирования. 

Напротив, J. Bełtowski и соавт. сообщили, что введе-
ние экзогенного H2S крысам с ожирением сопровожда-
лось зависящим от времени увеличением уровней неэте-
рифицированных жирных кислот и глицерина в их крови, 
что, по мнению авторов, может способствовать восста-
новлению липидного гомеостаза [31]. В 2017 г. N.N. Haj-
Yasein и соавт. [13] продемонстрировали, что диета с низ-
ким содержанием цистеина предотвращает набор массы 
тела у мышей и, соответственно, способствует индукции 
экспрессии гена PPARγ со снижением дифференцировки 
адипоцитов. При этом добавление агониста PPARγ (BRL-
49653) частично нивелировало ингибирующий эффект 
диеты с низким содержанием цистеина.

Участие H2S, продуцируемого эндотелием и ГМК, в ре-
гуляции сосудистого гомеостаза обусловлено как за счет 
активации эндотелиальных Са2+-зависимых K+-каналов 
(КСа-каналов), которые гиперполяризуют подлежащую 
мембрану сосудистых ГМК, так и напрямую через стиму-
ляцию АТФ-чувствительных K+-каналов (КАТФ-каналов) и 
ингибирование потенциал-зависимых Ca2+-каналов глад-
ких мышц [39] (рис. 3). 

Рис. 3. Влияние H2S, высвобождаемого 
периваскулярной жировой тканью, на 
регуляцию сосудистого тонуса [39]
Fig. 3. The effect of H2S on the regulation 
of vascular tone [39]

Установлено, что в ПВЖТ у человека, крысы и мыши 
процесс образования эндогенного H2S в основном ката-
лизируется ферментом CSE [40]. Имеющиеся данные 
свидетельствуют о том, что H2S оказывает мощный ва-
зорелаксирующий эффект в аорте крысы [7], тонкой и 
брыжеечных артериях [40]. Интересно, что H2S также 
повышает чувствительность клеток сосудистой стенки к 
сосудорасширяющим стимулам, модулируя активность 
eNOS, что сопровождается усилением наработки NO 
[37]. H2S трансформирует множество белков-мишеней 
посредством реакций персульфидирования посредством 
посттрансляционной модификации гидросульфурильных 
групп остатков цистеина (RSH) в персульфиды (RSSH) 
[34], а также участвует в окислительно-восстановитель-
ных реакциях, связывая АФК и свободные радикалы NO 
либо активируя внутриклеточные антиоксидантные си-
стемы, в том числе увеличивая наработку глутатиона [35].

Роль сероводорода в регуляции вазоактивной 
функции периваскулярной жировой ткани  
при метаболическом синдроме и ожирении

В литературе имеются данные о том, что при раз-
личных патологических состояниях, ассоциированных с 

нарушением обмена веществ, таких как метаболический 
синдром, ожирение, сахарный диабет, происходит нару-
шение продукции и снижение биодоступности H2S [28, 
31]. Согласно исследованиям J.  Bełtowski и соавт. [41], 
у крыс, получавших высококалорийную диету в течение  
3 мес., независимо от состава рациона, был нарушен 
вазорелаксирующий эффект ПВЖТ грудной аорты, что 
было связано со снижением экспрессии и активности 
CSE, а также продукции H2S. Введение животным агони-
стов PPARγ повышало экспрессию CSE и уровень H2S. У 
животных, получавших высококалорийную диету в тече-
ние 1 мес., антисократительный эффект ПВЖТ был вы-
ражен сильнее. При этом у них не изменялась экспрессия 
CSE, но продукция H2S оказалась выше, чем у животных 
контрольной группы. Как показали дальнейшие исследо-
вания, кратковременное содержание животных на диете 
с высокой концентрацией жиров приводило к нарушению 
окисления H2S в жировой ткани вследствие подавления 
биогенеза митохондрий [31]. В исследованиях на крысах, 
получавших высокожировую диету, было показано, что 
введение экзогенного донора H2S (NaHS) предотвраща-
ло повреждение клеток мезентериальных капилляров, 
а также способствовало восстановлению окислительно- 
восстановительного баланса в брыжеечной ПВЖТ [42].
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В эксперименте было установлено, что у крыс с ги-
пертриглицеролемией и гипергликемией эндогенный H2S 
участвует в ингибировании эндотелий-зависимой вазоре-
лаксации сосудистых гладких мышц как с сохранной, так 
и с удаленной ПВЖТ. Эти результаты свидетельствуют о 
том, что в зависимости от типа реакции (констрикция или 
релаксация) вазоактивные эффекты эндогенного H2S при 
метаболической патологии могут переключаться с ре-
лаксирующего на сократительный. Эксперименты по со-
вместному культивированию макрофагов ПВЖТ и сосуди-
стых сегментов, полученных у здоровых мышей и мышей 
с ожирением, показали, что макрофаги, рекрутируемые 
в ПВЖТ на фоне воспаления и окислительного стресса 
при ожирении, способствуют снижению продукции H2S и 
дисфункции сосудистого эндотелия [43]. При этом нару-
шение эндотелий-зависимой вазодилатации полностью 
устранялось путем введения донора GYY4137 и восста-
новления уровня H2S в культуре. Установлено также, что 
снижение продукции H2S приводит к усилению экспрессии 
молекул эндотелиальной адгезии ICAM-1 и VCAM-1, ко-
торые способствуют адгезии моноцитов к эндотелиально-
му слою сосудов, что приводит к последующему разви-
тию воспалительной реакции в стенке сосуда. Показано, 
что экзогенное введение NaHS или GYY4137 ингибирует 
экспрессию ICAM-1 и VCAM-1 и, таким образом, снижает 
дисфункцию эндотелиальных клеток [44]. Аналогичным 
образом экзогенное добавление NaHS может подавлять 
пролиферацию и миграцию сосудистых ГМК, вызванную 
высоким содержанием глюкозы и липидов. Недавнее ис-
следование показало, что H2S препятствует ремоделиро-
ванию сосудов через сигнальный путь PPARδ/SOCS3 [45]. 

Установлено, что H2S влияет на синтез или созрева-
ние компонентов внеклеточного матрикса: коллагена, 
эластина и фибронектина, а также регулирует экспрес-
сию и активность других белков, таких как металлопроте-
иназы и трансформирующий фактор роста-β (TGF-β) [46], 
которые играют важную роль в ремоделировании внекле-
точного матрикса.

Влияние H2S на сосудистый гомеостаз может также 
реализовываться через подавление экспрессии в ПВЖТ 
воспалительных факторов IL-18 и IL-1β, молекул адгезии 
(VCAM-1, ICAM-1) [44], E-селектина и хемокинов [47]. Из-
вестно, что снижение продукции H2S в адипоцитах сопро-
вождается усилением экспрессии воспалительных фак-
торов, таких как IL-6 и TNFα [27]. В адипоцитах мышей 
гиперэкспрессия CSE снижала исходно высокую экспрес-
сию MCP-1 и, таким образом, способствовала подавлению 
их провоспалительной активации. Кроме того, эксперимен-
тальные исследования показали, что H2S может влиять на 
функциональную активность ПВЖТ посредством моду-
ляции наработки адипокинов. Было установлено, что на 
фоне гипергликемии происходит снижение секреции ади-
понектина зрелыми адипоцитами, в то время как сверхэкс-
прессия CSE либо введение доноров H2S нивелировали 
эффекты глюкозы и повышали секрецию адипонектина 
[48]. C.B. Gomez и соавт. [49] показали, что введение кры-
сам экзогенных доноров NaHS и L-цистеина приводило к 
снижению концентрации лептина в крови, уровень которо-
го исходно был повышен на фоне высокожировой диеты. 

Накапливается все больше данных, свидетельствую-
щих о роли дисфункции ПВЖТ в патогенезе атероскле-
ротических и гипертонических нарушений, а также о 
связи между продукцией H2S и прогрессированием сер-
дечно-сосудистой патологии у людей с ожирением [50]. 

F. Comas и соавт. [27] обнаружили, что у пациентов с мор-
бидным ожирением концентрация H2S в сыворотке крови 
увеличивалась пропорционально объему жировой мас-
сы. При этом снижение индекса массы тела и окружности 
талии вследствие похудения сопровождалось понижени-
ем уровня H2S в крови. Эксперименты на эксплантатах 
жировой ткани человека и изолированных преадипоци-
тах показали, что введение доноров H2S или индукция 
эндогенного биосинтеза H2S приводили к активации ади-
погенеза, усилению эффектов инсулина и транскрипци-
онной активности PPARγ. В свою очередь, химическое 
ингибирование и нокаут генов ферментов, ответственных 
за синтез H2S (CSE, CBS, MPST), вызывали нарушение 
дифференцировки адипоцитов и усиление воспаления.

В ряде клинических исследований изучалась возмож-
ная роль серосодержащих аминокислот в липидном об-
мене. У лиц с ожирением была выявлена положительная 
корреляция между уровнями цистеина в плазме (но не 
метионина) и массой жировой ткани [50]. Было также про-
демонстрировано, что низкая концентрация серосодер-
жащих аминокислот в рационе в течение 8 нед. приводит 
к потере веса (~20%), увеличению уровня кетоновых тел 
и снижению концентрации лептина в крови у пациентов 
с ожирением по сравнению с контрольной группой лиц, 
находящихся на диете, богатой серосодержащими амино-
кислотами. Таким образом, низкое содержание в рационе 
серосодержащих аминокислот, являющихся источником 
для синтеза H2S, способствует снижению объема жировой 
ткани. При этом роль самих серосодержащих аминокис-
лот в регуляции метаболизма жировой ткани, независимо 
от их участия в биогенезе H2S, нельзя исключать. Напри-
мер, известно, что цистеин и гомоцистеин непосредствен-
но участвуют в эндогенной продукции газотрансмиттера 
H2S, тогда как другие серосодержащие аминокислоты, в 
частности таурин, вносят меньший вклад в биосинтез H2S. 
Также было показано, что ограничение цистеина, но не 
метионина, увеличивало выработку эндогенного серина, а 
его концентрация в плазме отрицательно коррелировала 
с уровнем триацилглицеролов и риском развития мета-
болического синдрома. При этом на фоне дефицита ци-
стеина усиливался биосинтез цистеина из метионина, что 
приводило к увеличению продукции промежуточного про-
дукта – гомоцистеина, являющегося предшественником 
H2S что, таким образом, частично нивелировало недоста-
ток биосинтеза H2S в условиях ограничения цистеина. 

Заключение
Взаимосвязь морфофункционального статуса ПВЖТ 

с риском развития и тяжестью течения заболеваний сер-
дечно-сосудистой системы в настоящее время не вы-
зывает сомнений. В физиологических условиях ПВЖТ  
генерирует ряд медиаторов, участвующих в поддержа-
нии нормального функционирования сосудистой стенки. 
При дисфункции ПВЖТ ее секреторный фенотип изме-
няется с преобладанием провоспалительного и вазокон-
стрикторного эффектов, что способствует прогрессиро-
ванию ССЗ. 

Одним из биологически активных веществ, выделя-
емых ПВЖТ, является газотрансмиттер H2S. Существу-
ющие на сегодняшний день сведения об эффекторной 
роли H2S в поддержании сосудистого гомеостаза, а также 
в развитии ассоциированных с его нарушением заболе-
ваний, позволяют рассматривать H2S в качестве возмож-
ного претендента на роль протекторного биологического 
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агента. Дальнейшее изучение клеточных и молекулярных 
механизмов действия газомедиатора H2S на клетки-ми-
шени поможет наиболее полно охарактеризовать его 

роль в патогенезе сосудистой дисфункции и расширит 
возможности для разработки способов профилактики и 
патогенетической терапии ССЗ.
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