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Аннотация
Введение. Проблема обоснования объема выборки является актуальной для различных научных и практических за-
дач. Однако при всем многообразии существующих на сегодня методов вопрос определения минимального количе-
ства исследований для валидации программного обеспечения (ПО) на основе технологий искусственного интеллекта 
(ТИИ) остается открытым.
Цель: определить минимальное количество исследований, необходимых для проведения валидации ПО на основе 
ТИИ, для решения задач лучевой диагностики с учетом баланса классов «норма» / «патология».
Материал и методы. Анализировались результаты работы ПО на основе ТИИ на наборе данных из 123 301 уни-
кального анонимизированного маммографического исследования. Оценивались выставленные значения по шкале Bi-
RADS: 0 – в случае диагностирования врачом 1-го или 2-го класса Bi-RADS («норма») и 1 – в случае классов Bi-RADS 
3, 4, 5 («патология»). Изначально баланс классов в исследовании составлял 89,3% («норма») / 10,7% («патология»). 
Из общего набора данных случайным образом формировалась выборка заданного объема и баланса классов «нор-
ма» / «патология», рассчитывалась площадь под кривой операционной характеристики приемника (AUC ROC). Для 
статистического обоснования описанные действия повторялись 10 000 раз для всех исследуемых объемов и балансов 
классов. В результате применения данного алгоритма были получены зависимости средних значений AUC ROC от 
количества исследований для пяти балансов классов (доля «патологии»: 10, 20, 30, 40 и 50%). Далее был проведен 
анализ законов распределения и поведения AUC ROC в зависимости от количества исследований.
Результаты. Максимальное значение коэффициента вариации значений AUC ROC для 10% доли «патологии» дости-
гается при количестве исследований, равном 190; для 20% – 80 исследований; для 30% – 120 исследований, для 40% – 
110 исследований, а для 50% – 70 исследований. 
Заключение. При тестировании ПО на основе ТИИ, а также систем поддержки принятия врачебных решений необхо-
димо учитывать, что количество исследований, отражающих наибольшую неоднородность значений AUC ROC (наи-
большее отклонение от среднего значения), различно для разных балансов классов. Баланс классов задается, исходя 
из возможностей исследователя, а минимальный объем – 190 при доле «патологии» 10%, 80 – при 20%, 120 – при 
30%, 110 – при 40%, 70 – при 50%. 
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Abstract
Introduction. Determining the minimum sample size for solving various tasks is an extremely important and at the same time 
unexplored problem. There are many methods, but most of them are not applicable for AI-based software validation.
Aim: To consider a methodology for determining a balance of classes “norm”/ “abnormality” and propose a statistical approach 
to determine the data amount necessary for testing AI-based software (validation).
Material and Methods. The results of AI-based software were analyzed using dataset of mammograms. Mammograms 
were classified by the presence of breast cancer (“abnormality”) and the absence of breast cancer (“norm”). The general set 
contains 123,301 unique studies. The original balance of classes in the study was “norm” 89.3%/“abnormality” 10.7%. As 
the results of AI-based software (ML-algorithm), a probability of the presence of pathology in the entire study was taken. The 
following values were used as empirical data (GT): 0 – in case of Bi-RADS classes 1 or 2 diagnosed by a doctor, and 1 – in 
case of Bi-RADS classes 3, 4, 5. Each data sample is transferred to AI-based software for processing. Quality metrics are 
calculated based on its results: AUC ROC. All the described actions were repeated 10,000 times for all the studied balances of 
“norm”/”abnormality”. Based on the results of AUC ROC calculations, mean values were calculated for different random data 
series with the same balances. Mean AUC ROC values were subjected to analysis.
Results. A maximum value of the coefficient of variation of AUC ROC values for 10% “abnormality” share is achieved at the 
number of studies equal to 190; for the 20% share, it is 80 studies; for the 30% share – 120 studies, for the 40% share – 110 
studies, and for the 50% share – 70 studies.
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Введение

Технологии компьютерного зрения и искусственного 
интеллекта начинают формировать систему поддержки 
принятия врачебных решений при выявлении патологий 
у пациентов. В работе большинства алгоритмов компью-
терного зрения принято выделять несколько этапов, в 
частности, предобработку изображения, распознавание 
(классификацию обнаруженного объекта по различным 
категориям) и принятие системой решения о наличии ин-
тересующего объекта на изображении [1].

Применение программного обеспечения (ПО) на осно-
ве технологий искусственного интеллекта (ТИИ) автома-
тизирует процесс классификации изображений, снижая 
влияние человеческого фактора на процесс обнаружения 
объектов (например, «патологий» на медицинских изо-
бражениях). Успешное применение ПО на основе ТИИ в 
приложениях компьютерного зрения было продемонстри-
ровано во многих работах [2, 3]. В частности в [4] было 
рассмотрено применение нескольких топологий нейрон-
ных сетей для классификации рентгенологических сним-
ков по группам «норма» / «патология». Одновременно с 
этим мы можем наблюдать стремительный рост числа 
ПО на основе ТИИ, зарегистрированных как медицинское 
изделие [5].

Одним из крупнейших проектов является Экспери-
мент по использованию инновационных технологий в 
области компьютерного зрения для анализа медицин-
ских изображений и дальнейшего применения в системе 
здравоохранения города Москвы (далее Эксперимент) 
[6]. Реализация такого масштабного проекта позволи-
ла разработать методологию оценки ПО на основе ТИИ 
с целью так называемой внешней валидации. Внешняя 
валидация – это оценка качества работы ПО на основе 
ТИИ на наборе данных, который не использовался при 
разработке [7]. Внешняя валидация проводится незаин-

Conclusion. Summarizing the conducted study results, it can be concluded that when testing AI-based software, it is necessary 
to consider that the number of studies reflecting the greatest heterogeneity of AUC ROC values (the largest deviation from the 
mean value) is different for various class balances. If the purpose of validation is to establish the worst-case behavior of AUC 
ROC values, then for the studied AI-based software, the “abnormality” share should be 10%, and the number of studies 190. 
If the validation is carried out under conditions of a limited amount of data, then the “abnormality” share should be 50% and 
the number of studies equal to 70.
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тересованной стороной на независимом наборе данных, 
что необходимо для объективной оценки обобщаемости 
и воспроизводимости результатов работы ПО на основе 
ТИИ [7]. 

Качество классификации исследований с помощью 
ПО на основе ТИИ зависит не только от особенностей 
алгоритмов ИИ, но также от качества и количества дан-
ных, на которых проходило обучение [4]. Качество дан-
ных определяется наличием технологических дефектов 
исследования, затрудняющих диагностику [8], а также 
непосредственно процессом создания наборов данных, 
включая стратегию разметки, верификации, структури-
зации данных, квалификации разметчиков и организа-
ции процесса создания набора данных в целом [9, 10]. 
Вопрос количества данных для обучения регулярно ос-
вещается в публикациях, однако зачастую указывается 
количество исследований, но не дается его обоснование 
[2]. Количество колеблется от нескольких тысяч до по-
лутора миллионов исследований [11]. Такой разброс во 
многом обусловлен сложностью и стоимостью создания 
качественного набора данных, включая этические и за-
конодательные аспекты [9, 10]. Еще более остро стоит 
вопрос количества данных для валидации ПО на основе 
ТИИ. В работе F. Harrel [12] авторы предложили исполь-
зовать 100–200 исследований для валидации прогности-
ческой регрессионной модели. В более поздних работах 
[11, 13] также были указаны альтернативные варианты 
оценки диагностической точности, основанные преиму-
щественно на достижении заданной мощности, в том 
числе экспериментальные исследования на выборках, 
значительно превышающих 100 и 200 исследований (бо-
лее 10 000 исследований) [11]. Однако такой подход не 
всегда может быть реализован в клинической практике.

В работе [14] авторы предлагают различные способы 
расчета размера выборки, исходя из показателей кали-
бровочных кривых, площади под ROC-кривой, чистой вы-
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годы и достижения заданного доверительного интервала. 
В этой же работе отмечается важность баланса классов 
в выборке, однако методики определения предложено не 
было.

Цель: представить новую методику определения ко-
личества исследований, необходимых и достаточных для 
проведения валидации ПО на основе ТИИ с учетом ба-
ланса классов «норма» / «патология».

Материал и методы
Дизайн исследования – ретроспективное обсерваци-

онное когортное исследование на базе одобренного Ко-
митетом по этике и зарегистрированного в исследовании 
ClinicalTrials (NCT04489992).

Набор данных содержит 123  301 уникальное мам-
мографическое исследование, полученное за период с 
1 сентября 2021 по 27 декабря 2021  гг. из ЕРИС ЕМИ-
АС (Единый Радиологический Информационный Сервис 
Единой Медицинской Информационно-Аналитической 
Системы). Критериями включения были наличие ответа 
от заданного ПО на основе ТИИ, а также описания за-
ключения от врача-рентгенолога. Критерием исключения 
являлось отсутствие классификации по Bi-RADS в тексте 
заключения. Перед использованием данные были пред-
варительно обработаны с целью удаления личной ин-
формации пациентов (анонимизация).

Маммографические исследования классифицирова-
лись по наличию («патология») и отсутствию («норма») 
рака молочной железы. Верификация проводилась по 
текстовым протоколам заключений врачей-рентгеноло-
гов с помощью алгоритма естественной обработки языка 

(MedLabel1). Анализировались выставленные значения 
по шкале Bi-RADS: 0 – в случае диагностирования вра-
чом 1-го или 2-го класса Bi-RADS («норма») и 1 – в случае 
классов Bi-RADS 3, 4, 5 («патология») [15]. Изначально 
баланс классов в исследовании составлял «норма» – 
89,3% / «патология» – 10,7%.

Производилась оценка результатов работы ПО на ос-
нове ТИИ, в качестве которого выступал один из серви-
сов искусственного интеллекта по направлению «маммо-
графия», участвующий в Эксперименте [16]. Валидация 
проходила в несколько этапов. На первом этапе данные 
были разделены на две группы – «норма» и «патология». 
Из разделенных данных случайным образом формирова-
лись выборки с балансом классов «норма» / «патология», 
содержащие «патологию» в количестве 50, 40, 30, 20 и 
10%. Минимальная выборка, сформированная случай-
ным образом, содержала 30 исследований, далее размер 
выборки увеличивался с шагом 10 с учетом сохранения 
доли «патологии». Максимальный объем изучаемой вы-
борки составил 26  386 (количество исследований с па-
тологией, умноженное на 2) исследований и обусловлен 
ограничением вычислительных мощностей.

Для каждого баланса классов и объема случайным 
образом формировались подвыборки 10  000 раз с воз-
вращением (так называемый бутреппинг), для них рас-
считывались значения AUC ROC (площадь под кривой 
операционной характеристики приемника). По результа-
там работы ПО на основе ТИИ были определены средние 
значения AUC ROC для различных случайных наборов 
исследований с одинаковым балансом классов. На ри-
сунке 1 представлена блок-схема описанного алгоритма.

1 Свидетельство о государственной регистрации программы для ЭВМ № 2020664321 Российская Федерация. MedLabel – автомати-
зированный анализ медицинских протоколов: № 2020663035: заявл. 27.10.2020: опубл. 11.11.2020 / С.П. Морозов [и др.]; заявитель 
Государственное бюджетное учреждение здравоохранения города Москвы «Научно-практический клинический центр диагностики и 
телемедицинских технологий Департамента здравоохранения города Москвы» (ГБУЗ «НПКЦ ДиТ ДЗМ»).

Рис. 1. Блок-схема алгоритма проведе-
ния вычисления AUC ROC при исполь-
зовании программного обеспечения 
на основе технологий искусственного 
интеллекта
Fig. 1. Block diagram of the algorithm for 
calculating the diagnostic accuracy metric
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Средние значения AUC ROC были подвергнуты трем 
типам анализа:

1. Фурье-анализ значений AUC ROC в зависимости от 
количества данных.

2. Анализ наиболее близкого теоретического распре-
деления значений AUC ROC посредством применения 
информационных критериев Акаике и Байеса.

3. Анализ коэффициента вариации в зависимости от 
количества исследований для установленного наиболее 
близкого типа распределения AUC ROC.

Анализ наиболее близкого распределения получен-
ных средних значений AUC ROC проводился для 10 раз-
личных распределений:

1. Нормального (Гауссово).
2. Логарифмически нормального.
3. Экспоненциального.
4. Пуассона.
5. Коши.
6. Гамма.
7. Логистического.

8. Биноминального.
9. Геометрического.
10. Вейбулла.
Параметры каждого из распределений вычислялись 

методом максимального правдоподобия. Совокупность 
описанных выше методов составляет методику опреде-
ления необходимого и достаточного количества иссле-
дований для проведения валидации ПО на основе ТИИ 
с использованием критерия диагностической точности 
AUC ROC.

Весь расчет показателей AUC ROC ПО на основе ТИИ 
и формирование подвыборок из генеральной совокуп-
ности осуществлялся на языке Python, версия 3.6. Фу-
рье-анализ и определение наиболее близких типов рас-
пределений проводились на программном обеспечении, 
реализованном на языке R.

Результаты и обсуждение
На рисунке 2 представлены результаты расчета AUC 

ROC для ПО на основе ТИИ.

Рис. 2. Поведение средних значений AUC ROC для 
различных балансов классов «норма» / «патология». 
Желтая линия показывает аппроксимирующую кривую. 
А – доля «патологии»» 10%; B – доля «патологии» 20%; 
C – доля «патологии» 30%; D – доля «патологии» 40%; 
E – доля «патологии» 50%
Fig. 2. Behavior of mean AUC ROC values for various 
balances. The yellow line in-dicates the approximating 
curve. A – 10% “abnormality” share; B – 20% “abnormality” 
share; C – 30% “abnormality” share; D – 40% “abnormality” 
share; E – 50% “abnormality” share

Предварительный анализ поведения значений AUC 
ROC показывает наличие периодической зависимости от 
количества исследований. Для балансов «норма» / «па-
тология» с долей «патологии» 10, 20% (см. рис. 2а и 2b) 
наблюдается нисходящий тренд от 30 до 5 000 исследо-

ваний (желтая линия) и восходящий тренд зависимости 
значений AUC ROC от количества исследований для ба-
ланса с долей «патологии» 40% (см. рис. 2d). Далее эта 
тенденция меняется на линейную. Полностью линейный 
тренд зависимости AUC ROC от количества исследова-
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ний наблюдается для балансов с долей «патологии»» 30 
и 50% (см. рис. 2c и 2e). Представленная зависимость 
имеет явно выраженный колебательный характер и не-
прерывна на участке от 0 до N количества исследований. 
Учитывая выявленный характер зависимости площади 
под кривой операционной характеристики приемника, 
можно представить зависимость AUC от количества ис-
следований как

                               

Предварительный анализ поведения значений AUC ROC показывает 

наличие периодической зависимости от количества исследований. Для балансов 

«норма» / «патология» с долей «патологии» 10, 20% (см. рис. 2а и 2b) 

наблюдается нисходящий тренд от 30 до 5 000 исследований (желтая линия) и 

восходящий тренд зависимости значений AUC ROC от количества исследований 

для баланса с долей «патологии» 40% (см. рис. 2d). Далее эта тенденция меняется 

на линейную. Полностью линейный тренд зависимости AUC ROC от количества 

исследований наблюдается для балансов с долей «патологии»» 30 и 50% (см. рис. 

2c и 2e). Представленная зависимость имеет явно выраженный колебательный 

характер и непрерывна на участке от 0 до N количества исследований. Учитывая 

выявленный характер зависимости площади под кривой операционной 

характеристики приемника, можно представить зависимость AUC от количества 

исследований как 

𝐴𝐴𝐴𝐴𝐴𝐴̅̅ ̅̅ ̅̅ = 𝐹𝐹(𝑛𝑛) (1); 

где F(n) – некоторая периодическая функция, зависящая от количества 

исследований. 

Если функция F(n) непрерывна и интегрируема во всем диапазоне 

изменения числа исследований, то можно определить спектральную плотность 

как 

𝐹𝐹(𝑛𝑛)̂ =∑𝐹𝐹𝑗𝑗(𝑛𝑛) ∗ exp⁡(−2𝜋𝜋𝜋𝜋(𝛾𝛾, 𝑛𝑛𝑗𝑗))
𝑁𝑁

𝑗𝑗=1
 (2); 

где F(n) – функция уравнения (1); n – количество образцов; N – общее 

количество исследований; γ – аргумент спектральной функции: 

𝛾𝛾 = 𝑅𝑅𝑅𝑅(𝐹𝐹(𝑛𝑛)̂)/𝐼𝐼𝐼𝐼(𝐹𝐹(𝑛𝑛)̂) (3); 

где Re((F(n)) – вещественная часть спектральной функции; Im((F(n)) – 

мнимая часть спектральной функции. 

Учитывая результаты, представленные на рисунке 2, и уравнения (2) и (3), 

был проведен Фурье-анализ средних значений AUC ROC для выявления 

особенностей в поведении. Результаты вычисления аргумента (3) спектральной 

                                   (1)
где F(n) – некоторая периодическая функция, зависящая 
от количества исследований.

Если функция F(n) непрерывна и интегрируема во 
всем диапазоне изменения числа исследований, то мож-
но определить спектральную плотность как
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               (2)
где F(n) – функция уравнения (1); n – количество образ-
цов; N – общее количество исследований; γ – аргумент 
спектральной функции:
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                     (3)

где Re((F(n)) – вещественная часть спектральной функ-
ции; Im((F(n)) – мнимая часть спектральной функции.

Учитывая результаты, представленные на рисунке 2, 
и уравнения (2) и (3), был проведен Фурье-анализ сред-
них значений AUC ROC для выявления особенностей в 
поведении. Результаты вычисления аргумента (3) спек-
тральной функции (2) в зависимости от количества испы-
таний, полученные с помощью Фурье-анализа, представ-
лены на рисунке 3.

На рисунке 3 для всех балансов можно выделить 
два основных паттерна поведения главных максиму-
мов и минимумов аргумента спектральной функции 
AUC ROC. Исключение составляет поведение мак-
симума аргумента спектральной функции AUC ROC 
баланса классов «норма» / «патология» с долей «па-
тологии» 10%. Значения основных максимумов и ми-
нимумов аргумента спектральной функции AUC ROC 
были подвергнуты дальнейшему анализу на наличие 
симметрии [17] вида:

Рис. 3. Зависимость аргумента спектральной функции AUC ROC от количества исследований для разных балансов классов. А – доля «патологии» 
10%; B – доля «патологии» 20%; C – доля «патологии» 30%; D – доля «патологии» 40%; E – доля «патологии» 50%
Fig. 3. Dependence of the argument of Fourier spectral function of the AUC ROC on the number of studies in the sample. А – 10% “abnormality” share; B – 
“20% “abnormality” share; C –30% “abnormality” share; D – 40% “abnormality” share; E – 50% “abnormality” share
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На рисунке 3 для всех балансов можно выделить два основных паттерна 

поведения главных максимумов и минимумов аргумента спектральной функции 

AUC ROC. Исключение составляет поведение максимума аргумента 

спектральной функции AUC ROC баланса классов «норма» / «патология» с долей 

«патологии» 10%. Значения основных максимумов и минимумов аргумента 

спектральной функции AUC ROC были подвергнуты дальнейшему анализу на 

наличие симметрии [17] вида: 

𝛾𝛾(𝑛𝑛) + 𝛾𝛾(𝑛𝑛𝑇𝑇 − 𝑛𝑛) = 0 (4) 

где nT – точка симметрии аргумента спектральной функции. 

На рисунке 4 показана зависимость количества образцов, соответствующих 

главным максимумам и минимумам аргумента спектральной функции AUC ROC, 

от доли «патологии» в балансе классов «норма» / «патология». 

 

Рис. 4. Зависимость количества исследований, соответствующих главным 

максимумам и минимумам аргумента спектральной функции AUC ROC, от доли 

«патологии» в балансе классов «норма» / «патология». Голубые точки с красной 

линией описывают количество исследований, соответствующих главным 

                         (4)
где nT – точка симметрии аргумента спектральной функции.

На рисунке 4 показана зависимость количества образ-
цов, соответствующих главным максимумам и миниму-
мам аргумента спектральной функции AUC ROC, от доли 
«патологии» в балансе классов «норма» / «патология».

Синяя линия на рисунке 4 обозначает середину ин-
тервала между первыми максимумами и минимумами 
аргумента спектральных функций AUC ROC. Для всех 
рассматриваемых долей «патологии» в балансе классов 
«норма» / «патология» середина интервала соответству-
ет значению 11 940 исследований. Полученное значение 
является точкой перехода nT. 

Рис. 4. Зависимость количества исследований, соответствующих главным максимумам и минимумам аргумента спектральной функции AUC ROC, 
от доли «патологии» в балансе классов «норма» / «патология». Голубые точки с красной линией описывают количество исследований, соответ-
ствующих главным максимумам аргумента Фурье образа в зависимости от баланса классов. Фиолетовые точки с салатовой кривой описывают зави-
симость количества исследований, соответствующих главным минимумам аргумента Фурье образа в зависимости от баланса классов
Fig. 4. Dependence of the number of studies corresponding to the main maxima and minima of the argument of AUC ROC spectral function on the 
“abnormality” share in the balance of “norm” / “abnormality” classes. Blue dots with red line describe the number of studies corresponding to the main 
maxima of the Fourier image argument as a function of class balance. Purple dots with a salad curve describe the dependence of the number of studies 
corresponding to the main minima of the Fourier image argument depending on the balance of classes

Чтобы найти максимальное отклонение от линии трен-
да (см. рис. 2) среднего показателя точности диагностики 
слева и справа от точки перехода (11 940 исследований), 
определяем ближайший тип простого распределения по 
минимуму критериев Акаике и Байеса. В таблице пред-
ставлены результаты сравнения распределения значе-
ний AUC ROC слева и справа от точки перехода для де-
сяти различных распределений.

Таблица. Типы распределений до и после точки перехода nT (11 940 
исследований)
Table. Types of distributions up to and after transition point nT (11,940 
studies)

№
Доля «патологии»  

в балансе  
«норма» / «патология»

Тип 
распределения 

до nT

Тип 
распределения 

после nT

1 0.1 Коши Нормальное
2 0.2 Коши Нормальное
3 0.3 Коши Логистическое

4 0.4 Коши Логарифмическое 
нормальное

5 0.5 Коши Логистическое

Из результатов анализа поведения аргумента спек-
тральной функции AUC ROC и анализа ближайшего те-
оретического распределения следует, что до точки пере-
хода (11 940 исследований) для всех балансов классов 
сохраняется один и тот же тип распределения – распре-
деление Коши. После точки перехода (11  940 исследо-
ваний) тип распределения меняется. Нормальное рас-
пределение наблюдается при 10 и 20% «патологии», 
логистическое – при 30 и 50% «патологии», а логнор-
мальное распределение значений AUC ROC – при 40% 
«патологии».

Для оценки однородности значений AUC ROC был 
проведен анализ коэффициента вариации в зависимости 
от количества исследований (до 11 940 исследований). В 
случае распределения Коши коэффициент вариации рас-
считывался по уравнению:

                                     

4 0.4 Коши Логарифмическое 
нормальное 

5 0.5 Коши Логистическое 
 

Из результатов анализа поведения аргумента спектральной функции AUC 

ROC и анализа ближайшего теоретического распределения следует, что до точки 

перехода (11 940 исследований) для всех балансов классов сохраняется один и 

тот же тип распределения – распределение Коши. После точки перехода (11 940 

исследований) тип распределения меняется. Нормальное распределение 

наблюдается при 10 и 20% «патологии», логистическое – при 30 и 50% 

«патологии», а логнормальное распределение значений AUC ROC – при 40% 

«патологии». 

Для оценки однородности значений AUC ROC был проведен анализ 

коэффициента вариации в зависимости от количества исследований (до 11 940 

исследований). В случае распределения Коши коэффициент вариации 

рассчитывался по уравнению: 

𝐾𝐾 = 𝛾𝛾
𝑥𝑥0

 (5); 

где γ – масштабный параметр в распределении Коши; x0 – параметр сдвига 

в распределении Коши.  

На рисунке 5 представлены результаты расчета зависимости коэффициента 

вариации распределения значений AUC ROC от количества исследований для 

пяти долей «патология» в балансе классов «норма» / «патология». 

 

 

 

 

 

 

 

 

                                (4)

где γ – масштабный параметр в распределении Коши; 
 x0 – параметр сдвига в распределении Коши. 
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На рисунке 5 представлены результаты расчета за-
висимости коэффициента вариации распределения зна-
чений AUC ROC от количества исследований для пяти 
долей «патология» в балансе классов «норма» / «пато-
логия».

Максимальное значение коэффициента вариации 
значений AUC ROC для 10% доли «патологии» достигает-
ся при количестве исследований, равном 190; для 20% –  
80 исследований; для 30% – 120 исследований, для 40% – 
110 исследований, а для 50% – 70 исследований. Таким 
образом, формируется гипотеза о возможности следую-
щего применения полученных результатов:

Определение AUC ROC на наборе данных с заданным 
балансом классов и соответствующим объемом выборки.

Определение доверительного интервала для AUC 
ROC с помощью метода бутстреппинга.

Использование нижней границы доверительного ин-
тервала в качестве порогового значения для принятия 
решения о допуске ПО на основании ТИИ AUC ROC.

Полученные результаты сопоставимы с данными пре-
дыдущего исследования, где оценка качества осущест-
влялась на основании анализа количества дефектов. 
Было показано, что оптимальный объем выборки ТИИ на 
основе ПО составляет 80 исследований [8].

Рис. 5. Коэффициент вариации значений AUC ROC в зависимости от количества исследований для разных балансов классов. A – доля «патологии» 
10%; B – доля «патологии» 20%; C – доля «патологии» 30%; D – доля «патологии» 40%; E – доля «патологии» 50%; F – обобщенное представление 
для всех долей «патологии»
Fig. 5. Coefficient of variation of AUC ROC values depending on the number of studies. A – for 10% “abnormality” share; B – for 20% “abnormality” share; C – 
for 30% “abnormality” share; D – for 40% “abnormality” share; E – for 50% “abnormality” share; F – a generalized representation for all “abnormality” shares
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В представленной работе предложен оригинальный 
подход к обоснованию необходимого объема данных при 
заданном балансе классов в исследовании. Ранее в ра-
ботах встречаются рассуждения о соотношении классов в 
валидационном наборе данных. В работе [14] предлагает-
ся выбирать между сбалансированной выборкой (50/50) и 
балансом, обусловленным частотой встречаемости целе-
вого признака в популяции. Однако частота встречаемо-
сти признака в популяции известна не всегда, она может 
варьировать с течением времени и в разных популяциях, 
может быть очень низкой для редко встречающихся пато-
логий. На основании вышеизложенного, логичным реше-
нием является задавать баланс классов как постоянную 
величину и выбирать объем необходимых для валидации 
данных для заданного баланса классов. Выбор баланса 
класса зависит от условий, которыми располагает иссле-
дователь при создании набора данных, т. е. финансовых, 
кадровых ресурсов, а также наличия самих исследований 
в необходимом соотношении и количестве.

Применение преобразования Фурье к колебаниям зна-
чений AUC ROC позволило выявить точку перехода, что 
является своеобразной границей между двумя различны-
ми распределениями. Эта граница соответствует значе-
нию 11 940 исследований. При использовании меньшего 
или равного количества исследований значения AUC ROC 
для всех изученных долей «патологии» в балансе классов 
«норма» / «патология» распределяются по закону, близ-
кому к распределению Коши. Причем если количество 
исследований превышало 11 940, то значения AUC ROC 
имели нормальное распределение для 10 и 20% долей 
«патологии», логистическое – для 30 и 50%, логарифми-
чески нормальное – для 40% долей «патологии».

Для оценки однородности значений AUC ROC в зави-
симости от количества исследований был проведен ана-
лиз коэффициента вариации распределения Коши, ко-
торый показал, что наибольшее отклонение от среднего 
значения AUC ROC наблюдается при доле «патологии» 
10% в балансе классов «норма» / «патология» и соответ-
ствует количеству исследований, равному 190.

Также следует отметить, что отклонение среднего 
значения AUC ROC от линии тренда с увеличением коли-

чества исследований уменьшается, что свидетельствует 
о том, что при использовании ПО на основе ТИИ в кли-
нической практике могут демонстрироваться показатели 
диагностической точности, отличные от полученных при 
валидационном тестировании. По этой причине на этапе 
валидации ПО на основе ТИИ необходимо определить 
максимальные пределы изменения показателей диагно-
стической точности и в дальнейшем проводить регуляр-
ный мониторинг его работы [18]. Разработанный подход 
к определению количества исследований, необходимых 
для валидации, также может использоваться в этих це-
лях, например, в программной системе мониторинга на 
основе технологии искусственного интеллекта1. 

Заключение
Обобщая результаты проведенного исследования, 

можно сделать вывод, что при тестировании ПО на ос-
нове ТИИ необходимо учитывать, что количество ис-
следований, отражающих наибольшую неоднородность 
значений AUC ROC (наибольшее отклонение от среднего 
значения), различно для разных балансов классов. Ба-
ланс классов задается, исходя из возможностей исследо-
вателя, а минимальный объем 190 при доле «патологии» 
10%, 80 – при 20%, 120 – при 30%, 110 – при 40%, 70 – при 
50%. В этом случае будет наблюдаться максимальное от-
клонение от среднего значения AUC ROC для исследу-
емого программного обеспечения на основе ТИИ. Полу-
ченные результаты можно использовать для валидации 
ПО на основе ТИИ, а также систем поддержки принятия 
врачебных решений как при допуске к работе в практиче-
ской деятельности, так и при дальнейшем мониторинге.

Ограничение исследований
Проведенные исследования были ограничены одной 

версией ПО на основе ТИИ и долей «патологий» до 50%. 
В дальнейших исследованиях будет проведен аналогич-
ный анализ для полного баланса классов с долей «пато-
логии» от 0 до 100% с шагом 10% и большего количества 
версий ПО на основе ТИИ для выявления более общей 
закономерности.

1 Свидетельство о государственной регистрации программы для ЭВМ №  2023665713 Российская Федерация. Веб-платформа 
технологического и клинического мониторинга результатов работы алгоритмов анализа цифровых медицинских изображений: № 
2023664691: заявл. 11.07.2023: опубл. 19.07.2023 / Ю.А. Васильев, А.В. Владзимирский, О.В. Омелянская [и др.]; заявитель Государ-
ственное бюджетное учреждение здравоохранения города Москвы «Научно-практический клинический центр диагностики и телеме-
дицинских технологий Департамента здравоохранения города Москвы».
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