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Abstract

Introduction. Cancer is accounting for 16.8% of all deaths and 22.8% of noncommunicable disease-related deaths,
approximately. The diagnostic, prognostic, and therapeutic aspects of patient management majorly depend on mutations that
drive the oncogenic process. However, evaluating the clinical significance of the variant is a major challenge, as many of them
become variants of unknown significance (VUS).

Aim: of the current study is to create a new algorithm for classification of missense variants.

Material and Methods. Data from the NCBI Assembly, Uniprot, GhomAD, and OncoKB databases was processed with Python
3 to assess oncogenicity, population frequency of missense variants, as well as their occurrence in orthologous sequences.
We selected 314 known benign polymorphisms and 332 reported pathogenic mutations of BRCA1, BRCA2, DICER1, PIK3CA,
and TP53 genes from the ClinVar database for training and testing datasets.

Results. We have developed the algorithm that provides three criteria based on oncogenicity and population frequency of a
variant, as well as its occurrence in orthologous sequences for assessing its potential pathogenicity.

A variant was classified as neutral if the following was true: a) a variant doesn’t meet the criterion for oncogenicity; b) a variant
meets at least one of the remaining criteria. All other variants were deemed to be pathogenic.

The new algorithm demonstrates high sensitivity (94.95% (88.61%, 98.34%)) and specificity (96.52% (91.33%, 99.04%)) in
classifying benign and pathogenic variants. The algorithm requires a position of a variant to be represented in population
databases and to correspond to an appropriately aligned region in a multiple sequence alignment of orthologs, along with two
adjacent positions.

Conclusion. The algorithm might be used to evaluate the variants of other oncogenic genes, possibly making the classification
of genetic variants more precise, intensifying molecular diagnostics.

Keywords: molecular pathology; mutation; clinical relevance; algorithms.

Resource support: the study was carried out in the Bioinformatics Research Center of the Scientific and Educational
Institute of Biomedicine, Pavlov University.

Funding: the study was carried out without financial support from grants, public, non-profit, commercial
organizations and structures.

For citation: Bug D.S., Narkevich A.N., Tishkov A.V., Petukhova N.V. An algorithm for assessing the

pathogenicity of genetic mutations in tumor based on a retrospective study of pathogenic
and neutral genetic variants. Siberian Journal of Clinical and Experimental Medicine.

2025;40(1):226—234. https://doi.org/10.29001/2073-8552-2025-40-1-226-234.



[.C. byr, A.H. Hapkesuy4, A.B. Tuwkos, H.B. Metyxosa
ANropuT™ OLEHKN NaToOreHHOCTN MyTaLni NPy OMyxonsax Ha OCHOBE PETPOCMNEKTUBHOMO NUCCreaoBaHUs

AATOPUTM OLLEHKU NATOreHHOCTU MYTALLUI NPH
OMNYXOASIX HO OCHOBE PeTPOCNEKTUBHOIO UCCAEAOBAHMUS
NATOreHHbIX U HEUTPAAbHbIX FEeHETUHECKUX BAPUCAHTOB

A.C. byr?, A.H. Hapkesu4?, A.B. Tuukos?, H.B. NeTyxosa'

" MepBbit CaHkT-MeTepOyprckmin rocyAapCTBEHHbI MEANLMHCKMIN YHUBEPCUTET MMeHU akagemuka W.MN. Masnoea
(NnCnermMy wm. W.MN. Naenoea),
197022, Poccuiickasa ®enepaums, CankT-INetepOypr, yn. JleBa Tonctoro, 6-8

2 KpacHosipckuii rocyapCTBEHHbIN MeQULMHCKUIA YHUBEPCUTET nMeHu npodeccopa B.®. BonHo-AceHeLkoro
(KpacI'MY nm. npodp. B.®. BowiHo-AceHeLkoro),
660022, Poccunckas Pepepauuns, KpacHosapck, yn. MNMaptusara XKenesHska, 1

AHHOTAOULMA

Bo BceM mMupe Ha Aonto 3noKaYecTBEHHbLIX HOBOOBpasoBaHui npuxoauTes npumepHo 16,8% Bcex cmepTten n 22,8% cmepTten,
CBSI3aHHbIX C HEMH(EKUNOHHBIMKU 3aboneBaHnsamMU. [InarHoCTUYECKUE, NPOrHOCTUYECKMUE U TepaneBTUYECKNE acnekTbl Beae-
HWUSI OHKOMNOrMYECKMX BONbHbLIX B 3HAYMTENBHOW CTEMEHN 3aBUCAT OT HanMuMs OpanBeEpPHbIX reHeTUYeckMx Mytauuin. OgHako
OUEHKa KIMMHUYECKON 3HAYMMOCTU STUX BapuaHTOB MOXET ObITb CNOXHOW 3afjajvei, U 3Ha4YeHne MHOTMX U3 HUX He yaaeTtcs
onpegenuTb.

Llenb uccnepoBaHmsA: pa3paboTka HOBOrO anropMTma Ans knaccudukaumm MUCCEHC-BapuaHToB.

Martepuan n metoabl. [laHHble 13 cbopHmkoB NCBI Assembly, Uniprot, GnomAD n OncoKB 6binu 3arpyxeHbl 1 06paboTaHbl
C ucnonb3oBaHneM Python 3 Ans ouEHKM OHKOFEHHOCTU MWCCEHC-BApUAHTOB M MX PaCNpOCTPAHEHHOCTU B YENOBEYECKON
nonynsiuum u cpegu nocrefoBaTenbHocTen-opTonoros. Beero 6bino otobpaHo 314 n3BecTHbIX 40BpOKa4YeCcTBEHHbLIX MOMu-
MopduamoB 1 332 natoreHHble MyTauun reHoB BRCA1, BRCA2, DICER1, PIK3CA n TP53 6a3bl gaHHbIx ClinVar, kotopble
cocTaBunu 0By4aroLnii U TECTOBbIN HAbOoPbI AaHHbIX.

Pe3ynbratbl. bbin co3gaH anropuTm, NpeaycMaTpyBatoLLmMn TPU KpUTEPUS, OCHOBaHHBLIX HA OHKOTEHHOCTU, pacnpoCTpaHeH-
HOCTUM BapuaHTa B NonynsuMn n NpucyTcTBUs ero B reHe-optornore. OTHECEHWE BapuaHTa K HelTparnbHbIM NPouM3BOANIOCH
npu: a) HECOOTBETCTBUMN KPUTEPUIO OHKOrEHHOCTU; 6) COOTBETCTBMMN XOTS Obl OOHOMY U3 ABYX OCTaBLUMXCS KpuTepues. Bee
ocTanbHble BapuaHTbl OTHOCUINWCL K NaToreHHbIM. Pa3paboTaHHbI anroputmM NpogeEMOHCTPUMPOBaN BbICOKYH YYBCTBUTEMb-
HocTb (94,95% (88,61%, 98,34%)) n cneumndumyHocTb (96,52% (91,33%, 99,04%)) knaccudmkaumm 4o6pOKa4YeCTBEHHbIX 1
naToreHHbIX BapMaHTOB M3 NpoBepoYHOro Aataceta. [nsa paboTbl anropuTma Heobxoanmo, 4Tobbl No3uunst BapuaHTa beina
npeacTaBneHa B MONynsAUMOHHBLIX 6a3ax AaHHbIX, @ Takke COOTBETCTBOBana NPaBWUSflbHO BbIPOBHEHHOMY Y4acTKy MHOXe-
CTBEHHOTO BblpaBHMBaHWNSI OPTONOrOB BMECTE C ABYMSI MPUMbIKAIOLLMMK NMO3ULIUSIMU.

3akntoyeHue. PazpaboTaHHbIN anroputM NoTEHLMANbHO MOXET ObITb NPUMEHEH AN OLEHKM BapUaHTOB B APYrMX OHKOreHax
M aHTMOHKOreHax, YTO MOXET MOBbLICUTb TOYHOCTb KnaccuduKaLumMm reHETUHECKUX BapUaHTOB U YNyylnMTb MOMNEKYNSAPHYIO
OVarHoCTUKY.

KnioueBble cnoBa: MOJeKynapHaa natonorna; Mytauua; KnmHnyeckoe 3Ha4vyeHune; anroputmMol.
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um. W.T. Maenosa.
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reHeTUYEeCKNX BapuaHToB. Cubupckull XypHar KIUHUYeCKoU U aKcrnepumMeHmaribHol meduyu-
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Introduction to cancer progression. Predictions of pathogenic mutations

Cancer poses a significant threat to society, public —are essential as they lay the foundation for the subsequent
health, and the economy. It is responsible for approximately ~identification of cancer-causing pathways and clinical
16.8% of all deaths and 22.8% of deaths associated with ~ applications [2]. After identifying the set of mutations in a
non-communicable diseases worldwide [1]. Cancer cells Patient's tumor, it is common to observe a small number of
accumulate numerous genetic alterations throughout their ~ clinically significant events, as well as a larger number of
lifespan, but only a select few of these alterations contribute ~ genomic variations that have uncertain clinical significance.

(3]
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Breast cancer is one of the most common cancers,
accounting for 21.2% of all malignant tumors in women.
This highlights the importance of studying the BRCA1
and BRCAZ2 genes, which are associated with this type of
cancer. The detection of mutations in these genes allows
for the prescription of targeted therapy for patients. PIK3CA
mutations have been found in certain types of malignant
tumors. In particular, these mutations are associated with poor
outcomes and chemoresistance in patients with advanced
breast cancer that is hormone receptor positive and HER2
negative. Pathogenic variants in the DICER1 gene lead to
the development of DICER1 syndrome and myelodysplastic
syndrome.

Somatic mutations in the TP53 gene are common in
malignant tumors and are associated with a poor prognosis [4].
They occur in about 5-10% of patients with myelodysplastic
syndrome and acute myeloid leukemia, leading to a decrease
in survival rates and response to chemotherapy [5].

There are a great number of computational methods for
predicting the pathogenicity of missense variants. In 2015,
the American College of Medical Genetics and Genomics
(ACMG) proposed several criteria for assessing the
pathogenicity of genetic variants [6]. One such criterion is in
silico analysis, which has also been included in guidelines
for the assessment of somatic variants developed by the
Association for Molecular Pathology, the American Society of
Clinical Oncology, and the College of American Pathologists
in 2017 [7]. In 2022, Clinical Genome Resource, Cancer
Genomics Consortium, and Variant Interpretation for Cancer
Consortium have also recommended the use of this approach
for somatic variant interpretation [8].

The study of gene evolution is a major focus of variant
effect prediction programs such as MutationAssessor,
ConSurf, SIFT, PolyPhen, EVE, and PROVEAN, among
others. While some of these predictors, like SNPs&GO,
utilize structural data, however, they still heavily rely on the
identification of homologous sequences to make predictions.
As a result, evolutionary conservation remains the primary
source of prediction.

Despite the fact that predictive programs are recognized
in international guidelines for the interpretation of sequence
variants, their specificity and sensitivity levels are not high
enough to be used in determining patient management
strategies [9—11]. In this paper we have developed a prediction
algorithm that is based on different variant characteristics,
including evolutionary conservation.

The aim of the current study is to create a new algorithm
for the classification of missense variants. Additionally, the
sensitivity and specificity of the new algorithm as well as
widely-used predictors should be assessed using the same set
of known pathogenic mutations and benign polymorphisms.

Material and Methods

The algorithm was created using Python 3 and additional
libraries for data obtaining and processing. The following
variant characteristics were considered: the evolutionary
conservation, minor allele frequency (population frequency),
oncogenicity, constraint, and localization in a known hotspot.

Genetic variation dataset

We obtained 314 benign and 332 pathogenic missense
variants of BRCA1 (protein sequence identifier NP_009231),
BRCA2 (NP_000050), DICER1 (NP_001258211), TP53
(NP_000537), and PIK3CA (NP_006209) genes from the

ClinVar database to evaluate sensitivity and specificity of the
new algorithm as well as other predictors using the ClinVar
dataset of known pathogenic and benign missense variants
(Table 1).

Table 1. The distribution of pathogenic and benign variants from the ClinVar
database

Ta6nuua 1. PacnpegeneHvie naTtoreHHbIX U J06pOKa4yeCTBEHHbIX BapuaHTOB
6a3bl aaHHbIX ClinVar

Variant number
Gene Symbol ...................................................
Benign Pathogenic
.......... BRCA1 151 98
BRCA2 148 47
TP53 6 106
DICER1 7 34
PIK3CA 2 47
Total 314 332

The dataset was shuffled and split into a training and
testing set in a 2:1 ratio. The training set was used to
determine the population frequency threshold as well as for
feature selection.

Oncogenicity

The oncogenicity of each variant was evaluated using
the OncoKB database [12]. According to the documentation,
variants are considered oncogenic if one of the following is
true:

— experimental data from at least one study shows that
the variant causes cancer (oncogenicity);

—the variantis located in a well-known area of the genome
that is often associated with cancer development (a hotspot);

— the variant has been previously detected in a patient
who responded to targeted therapy.

Variants that are likely to cause cancer (“Likely
Oncogenic”) are those for which experimental data shows
one of the following:

— the variant is linked to the development of a specific
type of cancer or hereditary tumor syndrome;

— the variant is located in a hotspot;

— the presence of the variant leads to resistance to
therapy, as indicated by clinical or laboratory studies.

Population frequency

Population frequency of each variant was assessed via
the GnomAD database [13]. To determine the threshold value
of the population frequency, we used ROC analysis with the
calculation of the Youden index:

J=Sep0p+Sp 1,

POP_

where Se ~and Sp  are the sensitivity and specificity
of determining pathogenic mutations in a training dataset,
respectively.

Evolutionary occurrence

Amino acid sequences were obtained from the NCBI
Assembly and Uniprot Proteomes databases for evaluation
of the evolution of studied genes. BUSCO scores were
used to identify sequences from the most complete genomic
(proteomic) datasets. We used the «cluster of orthologous
group» method and the construction of phylogenetic trees
in order to distinguish between orthologs and paralogs
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[14]. BLAST+ was used to generate clusters of orthologous
groups. The MAFFT program was used for multiple sequence
alignment.

Sequences of BRCA2 and DICERT1 orthologs were split
by their domain limits according to the PROSITE database
and realigned. During the analysis of the resulting multiple
sequence alignments we evaluated two features for each
variant:

— the occurrence of an alternative amino acid in at least
one sequence of the alignment;

— the occurrence of another amino acid of the same
biochemical group without changes of the neighboring
residues in at least one sequence of the alignment.

Constraint

The constraint score is an observed to expected ratio of
missense variants in a gene. Higher score indicates that the
transcript is more intolerant of variation. The constraint scores
for each gene were obtained via the GnomAD database. The
constraint variable was set to the score value.

Hotspot

To assess the localization of the variant at a mutational
hotspot, we used the “Cancer Hotspots” database, which was
compiled as a result of a study of 24,592 tumors. The data
was obtained from publicly available sources, such as The
Cancer Genome Atlas and The International Cancer Genome
Consortium, as well as from independently published data.
The hotspot variable was set to “1” if a variant was located in
a mutational hotspot, and “0” if it was not.

Feature selection

Feature selection was performed by selecting two
variables with the highest Chi-square statistics:

)

r C -
(0 — Eyj)?
i=1 j=1

ij
EI} ’

where r and c represent the numbers of rows and columns
in a contingency table, respectively; Eij and O, are the
numbers of expected and observed values in a cell located in
row i and column j.

Prediction programs

Along with our algorithm, the following pathogenicity
predictors were tested: PolyPhen2 (both HumDiv and HumVar
variants), SIFT, LRT, MutationTaster, MutationAssessor,
FATHMM, FATHMM-MKL, PROVEAN, MetaSVM, MetalR,
M-CAP, EVE, and AlphaMissense.

Evaluation and cross-validation of the algorithm

For the evaluation of the algorithm, sensitivity, specificity
and accuracy were calculated. The Clopper-Pearson formula
was used to determine 95% confidence intervals.

Three-fold cross-validation was used to evaluate the
reproducibility of the algorithm's performance. The dataset
was divided into three equal groups, and in each step of the
cross-validation process two groups were combined and
used for training while the remaining group was used for
testing. Additionally, an odds ratio natural logarithm and its
95% confidence interval were calculated:

TP + TN
OR) = (FP " FN)’

where OR is the odds ratio, and Cl is the upper bound of
the 95% confidence interval when the "+"-sign is used in the
formula, or the lower bound if the "-"-sign is used.

Results

Oncogenicity criterion

There are a variety of databases for interpreting the
clinical significance of genetic variants that collect evidence
about the pathogenicity of a particular mutation. One of these
databases is OncoKB. Its key features are its open access
policy, assessment of therapeutic significance, and its focus
on oncology.

We introduced an obligatory rule to consider all mutations
found in OncoKB with the label “Oncogenic” as those that
disrupt the gene's function. These included either variants
recognized as causing cancer based on the results of
experimental studies, or located in a known hotspot of the
gene, or previously detected in a patient who responded to
targeted therapy with respect to the mutated gene.

In total, two variables described the oncogenicity of
a variant for sets of “Oncogenic” and “Likely oncogenic”
mutations. A variable is set to “1” if a particular variant is
present in the mutational set and to “0 if it is not.

Population frequency criterion

The frequency of variants in the population is currently
used to determine their clinical effect. This approach helps
to distinguish between rare mutations that cause genetic
diseases and common, harmless genetic variations found
in the genomes of healthy individuals [15]. To determine the
population frequency threshold, we used variants from the
training dataset.

To find the optimal threshold for the population frequency,
we used ROC analysis. The classifier categorized all variants
with a frequency above the threshold as neutral, while those
below were classified as pathogenic. For each point on the
ROC curve, we calculated the Youden’s index. The threshold
for the population frequency was determined by finding the
point on the curve that corresponded to the highest Youden’s
index among all calculated values. This threshold was found
to be 0.00071% (Figure 1).

It's important to note that most variants with frequencies
above the threshold are known to be oncogenic mutations.
Therefore, the population frequency criterion is insufficient
and we need to consider other criteria when classifying their
pathogenicity.

The population frequency variable was set to “1” if a
particular variant has a minor allele frequency exceeding the
threshold, and to “0” in other cases.

Evolutionary occurrence criterion

The database for studying evolution was created using
191 the most complete genomes and proteomes of NCBI
Assemblies and UniProt Proteomes based on the BUSCO
score. In total, there were more than 4 million annotated
sequences in our new database, which can be used to build
multiple sequence alignments of orthologous sequences
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Fig. 1. ROC curve of a classifier based on population frequency of variants
Puc. 1. ROC-kpuBas knaccudukatopa Ha OCHOBE NONynsLUMOHHON YacTo-
Tbl BapyaHToOB

for each annotated gene. The code used for phylogenetic
analysis can be found in the repository at https://gitverse.
ru/d_bug/ortologi.

The presence of the same or a similar substitution in the
sequence of at least one orthologous protein was identified
as an occurrence of:

— the alternative amino acid;

— any amino acid from the biochemical group of the
alternative residue (the classification of amino acids into
biochemical groups used in the algorithm is illustrated in
Figure 2);

— any amino acid not belonging to the biochemical group
of the reference residue;

— any amino acid but the reference.
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Fig. 2. Classification of biochemical amino acid groups used for the
algorithm

Puc. 2. Knaccudpukaums 6Moxmmmyeckux rpynn aMmHOKMCOT, MCMOMNb30-
BaHHas B anroputme

We created additional criteria for each of these categories,
which represented matching neighboring amino acids
between the human sequence and the ortholog in question.

In total, there were eight variables for describing the
evolutionary conservation of a variant position: each variable
is set to "1" if certain criteria are met and "0" otherwise.

Feature selection

Two variables with the highest Chi-square statistics were
identified: the population frequency and the evolutionary
occurrence. The latter was most significant when the amino
acids from the biochemical group of an alternative residue
were present in a variant position with matching amino acids
from human protein in neighboring positions, or when the
alternative amino acid was present with or without matching
neighboring residues.

Algorithm formalization and requirements

Finally, we have developed a new algorithm which is
based on three criteria:

— The oncogenicity criterion for classifying variants is
whether they are listed among known oncogenic mutations
in the OncoKB database.

— The population frequency criterion is met if the variant
in question is present in the human population with an allele
frequency exceeding the threshold value of 0.00071% which
was determined with ROC-analysis.

— The evolutionary occurrence criterion is based on
the similarity of a mutated human gene sequence to the
sequence of one or several of the orthologous genes.
Orthologous genes are defined based on the phylogenetic
tree topology and the graph structure built on the basis of
the «cluster of orthologous group» method. This criterion is
satisfied when there is a presence of the exact same variant
in at least one orthologous sequence or when there is a
presence of an amino acid from the same biochemical class
with simultaneous match of the neighboring amino acids in
an orthologous sequence.

If a variant fails to meet the criteria for oncogenicity and at
most one other criterion, it is classified as a neutral variant by
the algorithm. In all other cases, it is classified as pathogenic.
The algorithm scheme is outlined in Figure 3.

The algorithm requires the variant position to be
represented in population databases. Therefore, it cannot
be located in problematic genomic regions, such as low-
mappability islands or repetitive regions.

The position of interest must also correspond to an aligned
region in multiple sequence alignments of orthologous
proteins. Since evolutionary criteria require the assessment
of adjacent positions, these positions should also be well-
aligned.

Algorithm evaluation

Following the previous studies on the evaluation of
prediction programs, we measured the sensitivity and
specificity of our new algorithm as well as other widely
used predictors by using a dataset of known benign and
pathogenic variants from the ClinVar database [16, 17]. The
new algorithm demonstrated high sensitivity (94.95%) and
specificity (96.52%) of predicting the pathogenicity of variants
from the dataset (Figure 4, Table 2).

Cross-validation

For each of the cross-sectional groups, the threshold
population frequency was recalculated, distinguishing
between pathogenic and neutral genetic variants. The values
obtained were 0.00071%, 0.00074%, and 0.00077%.

In all three cases the population frequency and
evolutionary occurrence were the most valuable features.
The latter was set to "1" in case of an alternative amino
acid, regardless of the neighboring residues, or in case of
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Fig. 3. Scheme of the proposed algorithm
Puc. 3. Cxema npegnaraemoro anroputma
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amino acid belonging to the same biochemical group as the
alternative residue, with mandatory matching of neighboring
amino acids between the human protein sequence and its
ortholog.

The sensitivity, specificity, and accuracy of detecting
pathogenic mutations, as well as area under the ROC curve
and odds ratio for the cross-sectional groups are presented
in the Table 3.

There were no statistically significant differences in the
area under the ROC curve in between each pair of different
steps (p > 0.05). The 95% confidence intervals for the odds
ratios of each subgroup contained the odds ratio values of
the two remaining subgroups.

The variant dataset, as well as the implementation of the
algorithm in the Python programming language is available at

https://qgitverse.ru/d_bug/2024 missense_variant
pathogenicity assessment.

Discussion

Hereby, we present the new algorithm for assessing
the pathogenicity of missense variants of BRCA1, BRCA2,
DICER1, PIK3CA, and TP53 genes. Its main advantages
are high specificity and sensitivity which were achieved by
thorough revision of the existing predictors’ algorithms.

First, there is no generally accepted set of the most
complete proteomes or genomes that would be used
universally for evolution study, just as there is no algorithm
to obtain such a set. The problem of standardizing a dataset
selection for evolutionary study is not resolved yet. In this
study, rather than selecting sequences randomly, we used
BUSCO scores to obtain the most complete proteome
sequence datasets, which minimizes the possibility of missing
any orthologous genes. The instructions for assembling a
custom database based on the BUSCO scores are outlined

in the project repository: https://gitverse.ru/d_bug/ortologi.
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Fig. 4. Sensitivity and specificity of variant classification based on pathogenicity assessment
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Table 2. Sensitivity, specificity, and accuracy of the tested algorithms

Ta6nuua 2. YyBCTBUTENBHOCTb, CNELMEPUYHOCTb Y TOYHOCTb NCCNEeA0BaHHbIX anropuTMOB

Name Se (ClI, Clh), % Sp (ClI, Clh), % Acc (Cll, Clh), %
Proposedalgonthm 9495(88619834) .................. 9652(9133 9904) 9579(9217 9806) ..........
AlphaMissense 88.89 (80.99, 94.32) 89.57 (82.48, 94.49) 89.25 (84.31, 93.06)
LRT 79.80 (70.54, 87.20) 89.57 (82.48, 94.49) 85.05 (79.55, 89.54)
FATHMM-MKL 96.97 (91.40, 99.37) 73.04 (63.97, 80.89) 84.11 (78.51, 88.74)
MetaSVM 79.80 (70.54, 87.20) 80.00 (71.52, 86.88) 79.91 (73.90, 85.06)
MutationTaster 88.89 (80.99, 94.32) 71.30 (62.12, 79.35) 79.44 (73.40, 84.65)
MetaLR 79.80 (70.54, 87.20) 73.91 (64.90, 81.66) 76.64 (70.38, 82.13)
Polyphen2 (HVAR) 79.80 (70.54, 87.20) 65.22 (55.77, 73.86) 71.96 (65.43, 77.87)
Polyphen2 (HDIV) 84.85 (76.24, 91.26) 60.87 (51.33, 69.84) 71.96 (65.43, 77.87)
SIFT 73.74 (63.93, 82.07) 58.26 (48.70, 67.39) 65.42 (58.63, 71.77)
FATHMM 90.91 (83.44, 95.76) 42.61 (33.44, 52.17) 64.95 (58.15, 71.33)
PROVEAN 47.47 (37.34, 57.76) 70.43 (61.21, 78.58) 59.81 (52.91, 66.44)
EVE 68.69 (58.59, 77.64) 45.22 (35.92, 54.77) 56.07 (49.15, 62.83)
M-CAP 92.93 (85.97, 97.11) 4.35(1.43, 9.85) 45.33 (38.53, 52.26)
MutationAssessor 19.19 (11.97, 28.34) 19.13 (12.39, 27.52) 19.16 (14.11, 25.08)

Note: Se — sensitivity, Sp — specificity, Acc — accuracy, Cll — lower bound of the 95% confidence interval, Clh — the higher bound of the 95% confidence

interval.

Table 3. Sensitivity, specificity, accuracy, area under the ROC curve, and odds ratio logarithm of each cross-validation step

Ta6nuua 3. YyBCTBUTENBHOCTb, CNEUMEUYHOCTb, TOYHOCTb, Nnowaab nog ROC-kprBoO 1 norapudM OTHOLLEHUST LLIAHCOB KaXa0M U3 NepekpecTHbIX rpynmn

Measure

Se (ClI, Clh), %

92.79 (86.29, 96.84

94.44 (88.30, 97.93)

94.69 (88.80, 98.03)

Sp (Cll, CIh), %

98.10 (93.29, 99.77

96.26 (90.70, 98.97)

95.10 (88.93, 98.39)

Acc (ClI, Clh), %

95.37 (91.65, 97.76

95.35 (91.61, 97.75)

94.88 (91.03, 97.42)

AUROC (ClI, Clh)

0.954 (0.927, 0.982

0.954 (0.925, 0.982)

0.949 (0.919, 0.979)

In(OR) (ClII, Clh)

6.40 (4.92, 8.07)

5.99 (4.79, 7.38)

5.76 (4.63, 7.06)

Note: Se — sensitivity, Sp — specificity, Acc — accuracy, AUROC — area under the ROC curve, In(OR) — odds ratio natural logarithm, Cll — lower bound of the
95% confidence interval, Clh — the higher bound of the 95% confidence interval.

Second, even the modern predictors don’t classify
homologous sequences into orthologs and paralogs, which
can lead to prediction errors [18]. In this algorithm, both the
«cluster of orthologous group» method and the construction
of phylogenetic trees were used to take only orthologous
sequences into the analysis. To implement this method,
we created our own tool, available at the project repository:
https://gitverse.ru/d_bug/ortologi.

Third, predictors use full protein sequences for alignment,
which can cause misalignment in case of multidomain
proteins. As structural and functional compartments of a
protein, domains of a single protein may have slightly different
evolutionary history [19]. For the new algorithm, we have
aligned the fragments of multidomain proteins to observe
evolutionary history of each individual domain.

Using this approach, we have managed to get correct
pathogenicity predictions for three known DICER1 mutations:
p.E1705K, p.E1913K, and p.D1822V. In the original multiple
sequence alignment, there were E, K, and N residues at the
1705th position, E, K, L, and V at the 1814th position, D, V,
C, K, and Y at the 1822nd position. After the realignment of
DICER1 amino acid subsequences there were exclusively
E, E, and D at the 1705th, 1813th, and 1822nd positions,
respectively, which reflects complete conservation and
immutability of these amino acids.

Fourth, the majority of predictors do not use population
and cancer databases for decision-making. We obtained
data from GnomAD and OncoKB and designed the criteria
for them to use in classifying pathogenic and neutral variants.
This introduces an “unfair advantage” of our algorithm, as it
uses the OncoKB database, which might contain mutations
already listed in ClinVar as pathogenic variants. However,
after removing variants from the OncoKB database from the
dataset, the updated sensitivity (94.12%, (86.80%, 98.06%)),
specificity (96.52% (91.33%, 99.04%)), and accuracy (95.50%
(91.63%, 97.92%)) values did not change significantly.

Finally, a significant problem of a great number of
variant pathogenicity prediction programs is the use of
machine learning algorithms for interpreting the results.
While the utilization of these algorithms can lead to an
improvement in sensitivity and specificity, it may incorporate
an uninterpretative part into the prediction algorithm, which
cannot be explained in biological or medical context. This fact
is widely known and addressed as the “black box problem” —
the difficulty of deciphering the reasoning behind an artificial
intelligence system’s predictions or decisions [20].

The main drawback of the algorithm is that it focuses
on cancer-related genes and cannot be used for variant
prediction unrelated to cancer. The positions of the variants of
interest should also be sufficiently represented by population
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databases, as well as in the multiple alignment of orthologous
sequences. However, fine-tuning of the population allele
frequency limit as well as the rules for meeting the evolutionary
criterion might help optimize the algorithm for usage in case
of other genetic diseases.

It's important to note that the results of the algorithm need
to be updated regularly to keep up with the growing amount
of data on variant populations, oncogenicity, and evolution.
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