
226 

ЦИФРОВЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ И ЗДРАВООХРАНЕНИИ / 
DIGITAL TECHNOLOGIES IN MEDICINE AND HEALTHCARE 

https://doi.org/10.29001/2073-8552-2025-40-1-226-234
УДК 575.174.8:616-006-079.7:575.224

An algorithm for assessing the pathogenicity of genetic 
mutations in tumor based on a retrospective study of 
pathogenic and neutral genetic variants
Dmitrii S. Bug1, Artem N. Narkevich2, Artem V. Tishkov1, Natalia V. Petukhova1

1 Pavlov First Saint Petersburg State Medical University (Pavlov University),  
6-8, L’va Tolstogo str., Saint Petersburg, 197022, Russian Federation
2 Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 
1, Partizana Zheleznyaka str., Krasnoyarsk, 660022, Russian Federation

Abstract
Introduction. Cancer is accounting for 16.8% of all deaths and 22.8% of noncommunicable disease-related deaths, 
approximately. The diagnostic, prognostic, and therapeutic aspects of patient management majorly depend on mutations that 
drive the oncogenic process. However, evaluating the clinical significance of the variant is a major challenge, as many of them 
become variants of unknown significance (VUS).
Aim: of the current study is to create a new algorithm for classification of missense variants.
Material and Methods. Data from the NCBI Assembly, Uniprot, GnomAD, and OncoKB databases was processed with Python 
3 to assess oncogenicity, population frequency of missense variants, as well as their occurrence in orthologous sequences.
We selected 314 known benign polymorphisms and 332 reported pathogenic mutations of BRCA1, BRCA2, DICER1, PIK3CA, 
and TP53 genes from the ClinVar database for training and testing datasets.
Results. We have developed the algorithm that provides three criteria based on oncogenicity and population frequency of a 
variant, as well as its occurrence in orthologous sequences for assessing its potential pathogenicity.
A variant was classified as neutral if the following was true: a) a variant doesn’t meet the criterion for oncogenicity; b) a variant 
meets at least one of the remaining criteria. All other variants were deemed to be pathogenic.
The new algorithm demonstrates high sensitivity (94.95% (88.61%, 98.34%)) and specificity (96.52% (91.33%, 99.04%)) in 
classifying benign and pathogenic variants. The algorithm requires a position of a variant to be represented in population 
databases and to correspond to an appropriately aligned region in a multiple sequence alignment of orthologs, along with two 
adjacent positions.
Conclusion. The algorithm might be used to evaluate the variants of other oncogenic genes, possibly making the classification 
of genetic variants more precise, intensifying molecular diagnostics.
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Аннотация
Во всем мире на долю злокачественных новообразований приходится примерно 16,8% всех смертей и 22,8% смертей, 
связанных с неинфекционными заболеваниями. Диагностические, прогностические и терапевтические аспекты веде-
ния онкологических больных в значительной степени зависят от наличия драйверных генетических мутаций. Однако 
оценка клинической значимости этих вариантов может быть сложной задачей, и значение многих из них не удается 
определить.
Цель исследования: разработка нового алгоритма для классификации миссенс-вариантов.
Материал и методы. Данные из сборников NCBI Assembly, Uniprot, GnomAD и OncoKB были загружены и обработаны 
с использованием Python 3 для оценки онкогенности миссенс-вариантов и их распространенности в человеческой 
популяции и среди последовательностей-ортологов. Всего было отобрано 314 известных доброкачественных поли-
морфизмов и 332 патогенные мутации генов BRCA1, BRCA2, DICER1, PIK3CA и TP53 базы данных ClinVar, которые 
составили обучающий и тестовый наборы данных.
Результаты. Был создан алгоритм, предусматривающий три критерия, основанных на онкогенности, распространен-
ности варианта в популяции и присутствия его в гене-ортологе. Отнесение варианта к нейтральным производилось 
при: а) несоответствии критерию онкогенности; б) соответствии хотя бы одному из двух оставшихся критериев. Все 
остальные варианты относились к патогенным. Разработанный алгоритм продемонстрировал высокую чувствитель-
ность (94,95% (88,61%, 98,34%)) и специфичность (96,52% (91,33%, 99,04%)) классификации доброкачественных и 
патогенных вариантов из проверочного датасета. Для работы алгоритма необходимо, чтобы позиция варианта была 
представлена в популяционных базах данных, а также соответствовала правильно выровненному участку множе-
ственного выравнивания ортологов вместе с двумя примыкающими позициями.
Заключение. Разработанный алгоритм потенциально может быть применен для оценки вариантов в других онкогенах 
и антионкогенах, что может повысить точность классификации генетических вариантов и улучшить молекулярную 
диагностику.
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Introduction
Cancer poses a significant threat to society, public 

health, and the economy. It is responsible for approximately 
16.8% of all deaths and 22.8% of deaths associated with 
non-communicable diseases worldwide [1]. Cancer cells 
accumulate numerous genetic alterations throughout their 
lifespan, but only a select few of these alterations contribute 

to cancer progression. Predictions of pathogenic mutations 
are essential as they lay the foundation for the subsequent 
identification of cancer-causing pathways and clinical 
applications [2]. After identifying the set of mutations in a 
patient's tumor, it is common to observe a small number of 
clinically significant events, as well as a larger number of 
genomic variations that have uncertain clinical significance. 
[3].
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Breast cancer is one of the most common cancers, 
accounting for 21.2% of all malignant tumors in women. 
This highlights the importance of studying the BRCA1 
and BRCA2 genes, which are associated with this type of 
cancer. The detection of mutations in these genes allows 
for the prescription of targeted therapy for patients. PIK3CA 
mutations have been found in certain types of malignant 
tumors. In particular, these mutations are associated with poor 
outcomes and chemoresistance in patients with advanced 
breast cancer that is hormone receptor positive and HER2 
negative. Pathogenic variants in the DICER1 gene lead to 
the development of DICER1 syndrome and myelodysplastic 
syndrome.

Somatic mutations in the TP53 gene are common in 
malignant tumors and are associated with a poor prognosis [4]. 
They occur in about 5-10% of patients with myelodysplastic 
syndrome and acute myeloid leukemia, leading to a decrease 
in survival rates and response to chemotherapy [5].

There are a great number of computational methods for 
predicting the pathogenicity of missense variants. In 2015, 
the American College of Medical Genetics and Genomics 
(ACMG) proposed several criteria for assessing the 
pathogenicity of genetic variants [6]. One such criterion is in 
silico analysis, which has also been included in guidelines 
for the assessment of somatic variants developed by the 
Association for Molecular Pathology, the American Society of 
Clinical Oncology, and the College of American Pathologists 
in 2017 [7]. In 2022, Clinical Genome Resource, Cancer 
Genomics Consortium, and Variant Interpretation for Cancer 
Consortium have also recommended the use of this approach 
for somatic variant interpretation [8].

The study of gene evolution is a major focus of variant 
effect prediction programs such as MutationAssessor, 
ConSurf, SIFT, PolyPhen, EVE, and PROVEAN, among 
others. While some of these predictors, like SNPs&GO, 
utilize structural data, however, they still heavily rely on the 
identification of homologous sequences to make predictions. 
As a result, evolutionary conservation remains the primary 
source of prediction.

Despite the fact that predictive programs are recognized 
in international guidelines for the interpretation of sequence 
variants, their specificity and sensitivity levels are not high 
enough to be used in determining patient management 
strategies [9–11]. In this paper we have developed a prediction 
algorithm that is based on different variant characteristics, 
including evolutionary conservation.

The aim of the current study is to create a new algorithm 
for the classification of missense variants. Additionally, the 
sensitivity and specificity of the new algorithm as well as 
widely-used predictors should be assessed using the same set 
of known pathogenic mutations and benign polymorphisms.

Material and Methods
The algorithm was created using Python 3 and additional 

libraries for data obtaining and processing. The following 
variant characteristics were considered: the evolutionary 
conservation, minor allele frequency (population frequency), 
oncogenicity, constraint, and localization in a known hotspot.

Genetic variation dataset
We obtained 314 benign and 332 pathogenic missense 

variants of BRCA1 (protein sequence identifier NP_009231), 
BRCA2 (NP_000050), DICER1 (NP_001258211), TP53 
(NP_000537), and PIK3CA (NP_006209) genes from the 

ClinVar database to evaluate sensitivity and specificity of the 
new algorithm as well as other predictors using the ClinVar 
dataset of known pathogenic and benign missense variants 
(Table 1).

Table 1. The distribution of pathogenic and benign variants from the ClinVar 
database
Таблица 1. Распределение патогенных и доброкачественных вариантов 
базы данных ClinVar

Gene symbol
Variant number

Benign Pathogenic

BRCA1 151 98

BRCA2 148 47

TP53 6 106

DICER1 7 34

PIK3CA 2 47

Total 314 332

The dataset was shuffled and split into a training and 
testing set in a 2:1 ratio. The training set was used to 
determine the population frequency threshold as well as for 
feature selection.

Oncogenicity
The oncogenicity of each variant was evaluated using 

the OncoKB database [12]. According to the documentation, 
variants are considered oncogenic if one of the following is 
true:

– experimental data from at least one study shows that 
the variant causes cancer (oncogenicity);

– the variant is located in a well-known area of the genome 
that is often associated with cancer development (a hotspot);

– the variant has been previously detected in a patient 
who responded to targeted therapy.

Variants that are likely to cause cancer (“Likely 
Oncogenic”) are those for which experimental data shows 
one of the following:

– the variant is linked to the development of a specific 
type of cancer or hereditary tumor syndrome;

– the variant is located in a hotspot;
– the presence of the variant leads to resistance to 

therapy, as indicated by clinical or laboratory studies.

Population frequency
Population frequency of each variant was assessed via 

the GnomAD database [13]. To determine the threshold value 
of the population frequency, we used ROC analysis with the 
calculation of the Youden index:

J=Sepop+Sppop
 – 1,

where Sepop and Sppop are the sensitivity and specificity 
of determining pathogenic mutations in a training dataset, 
respectively.

Evolutionary occurrence
Amino acid sequences were obtained from the NCBI 

Assembly and Uniprot Proteomes databases for evaluation 
of the evolution of studied genes. BUSCO scores were 
used to identify sequences from the most complete genomic 
(proteomic) datasets. We used the «cluster of orthologous 
group» method and the construction of phylogenetic trees 
in order to distinguish between orthologs and paralogs 
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[14]. BLAST+ was used to generate clusters of orthologous 
groups. The MAFFT program was used for multiple sequence 
alignment.

Sequences of BRCA2 and DICER1 orthologs were split 
by their domain limits according to the PROSITE database 
and realigned. During the analysis of the resulting multiple 
sequence alignments we evaluated two features for each 
variant:

– the occurrence of an alternative amino acid in at least 
one sequence of the alignment;

– the occurrence of another amino acid of the same 
biochemical group without changes of the neighboring 
residues in at least one sequence of the alignment.

Constraint
The constraint score is an observed to expected ratio of 

missense variants in a gene. Higher score indicates that the 
transcript is more intolerant of variation. The constraint scores 
for each gene were obtained via the GnomAD database. The 
constraint variable was set to the score value.

Hotspot
To assess the localization of the variant at a mutational 

hotspot, we used the “Cancer Hotspots” database, which was 
compiled as a result of a study of 24,592 tumors. The data 
was obtained from publicly available sources, such as The 
Cancer Genome Atlas and The International Cancer Genome 
Consortium, as well as from independently published data. 
The hotspot variable was set to “1” if a variant was located in 
a mutational hotspot, and “0” if it was not.

Feature selection
Feature selection was performed by selecting two 

variables with the highest Chi-square statistics:

where r and c represent the numbers of rows and columns 
in a contingency table, respectively; Eij and Oij are the 
numbers of expected and observed values in a cell located in 
row i and column j.

Prediction programs
Along with our algorithm, the following pathogenicity 

predictors were tested: PolyPhen2 (both HumDiv and HumVar 
variants), SIFT, LRT, MutationTaster, MutationAssessor, 
FATHMM, FATHMM-MKL, PROVEAN, MetaSVM, MetaLR, 
M-CAP, EVE, and AlphaMissense.

Evaluation and cross-validation of the algorithm
For the evaluation of the algorithm, sensitivity, specificity 

and accuracy were calculated. The Clopper-Pearson formula 
was used to determine 95% confidence intervals. 

Three-fold cross-validation was used to evaluate the 
reproducibility of the algorithm's performance. The dataset 
was divided into three equal groups, and in each step of the 
cross-validation process two groups were combined and 
used for training while the remaining group was used for 
testing. Additionally, an odds ratio natural logarithm and its 
95% confidence interval were calculated:

where OR is the odds ratio, and CI is the upper bound of 
the 95% confidence interval when the "+"-sign is used in the 
formula, or the lower bound if the "−"-sign is used.

Results

Oncogenicity criterion
There are a variety of databases for interpreting the 

clinical significance of genetic variants that collect evidence 
about the pathogenicity of a particular mutation. One of these 
databases is OncoKB. Its key features are its open access 
policy, assessment of therapeutic significance, and its focus 
on oncology.

We introduced an obligatory rule to consider all mutations 
found in OncoKB with the label “Oncogenic” as those that 
disrupt the gene's function. These included either variants 
recognized as causing cancer based on the results of 
experimental studies, or located in a known hotspot of the 
gene, or previously detected in a patient who responded to 
targeted therapy with respect to the mutated gene.

In total, two variables described the oncogenicity of 
a variant for sets of “Oncogenic” and “Likely oncogenic” 
mutations. A variable is set to “1” if a particular variant is 
present in the mutational set and to “0 if it is not.

Population frequency criterion
The frequency of variants in the population is currently 

used to determine their clinical effect. This approach helps 
to distinguish between rare mutations that cause genetic 
diseases and common, harmless genetic variations found 
in the genomes of healthy individuals [15]. To determine the 
population frequency threshold, we used variants from the 
training dataset.

To find the optimal threshold for the population frequency, 
we used ROC analysis. The classifier categorized all variants 
with a frequency above the threshold as neutral, while those 
below were classified as pathogenic. For each point on the 
ROC curve, we calculated the Youden’s index. The threshold 
for the population frequency was determined by finding the 
point on the curve that corresponded to the highest Youden’s 
index among all calculated values. This threshold was found 
to be 0.00071% (Figure 1).

It's important to note that most variants with frequencies 
above the threshold are known to be oncogenic mutations. 
Therefore, the population frequency criterion is insufficient 
and we need to consider other criteria when classifying their 
pathogenicity.

The population frequency variable was set to “1” if a 
particular variant has a minor allele frequency exceeding the 
threshold, and to “0” in other cases.

Evolutionary occurrence criterion
The database for studying evolution was created using 

191 the most complete genomes and proteomes of NCBI 
Assemblies and UniProt Proteomes based on the BUSCO 
score. In total, there were more than 4 million annotated 
sequences in our new database, which can be used to build 
multiple sequence alignments of orthologous sequences 
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Fig. 1. ROC curve of a classifier based on population frequency of variants
Рис. 1. ROC-кривая классификатора на основе популяционной часто-
ты вариантов

for each annotated gene. The code used for phylogenetic 
analysis can be found in the repository at https://gitverse.
ru/d_bug/ortologi.

The presence of the same or a similar substitution in the 
sequence of at least one orthologous protein was identified 
as an occurrence of:

– the alternative amino acid;
– any amino acid from the biochemical group of the 

alternative residue (the classification of amino acids into 
biochemical groups used in the algorithm is illustrated in 
Figure 2);

– any amino acid not belonging to the biochemical group 
of the reference residue;

– any amino acid but the reference. 

Fig. 2. Classification of biochemical amino acid groups used for the 
algorithm
Рис. 2. Классификация биохимических групп аминокислот, использо-
ванная в алгоритме

We created additional criteria for each of these categories, 
which represented matching neighboring amino acids 
between the human sequence and the ortholog in question.

In total, there were eight variables for describing the 
evolutionary conservation of a variant position: each variable 
is set to "1" if certain criteria are met and "0" otherwise.

Feature selection
Two variables with the highest Chi-square statistics were 

identified: the population frequency and the evolutionary 
occurrence. The latter was most significant when the amino 
acids from the biochemical group of an alternative residue 
were present in a variant position with matching amino acids 
from human protein in neighboring positions, or when the 
alternative amino acid was present with or without matching 
neighboring residues. 

Algorithm formalization and requirements
Finally, we have developed a new algorithm which is 

based on three criteria:
– The oncogenicity criterion for classifying variants is 

whether they are listed among known oncogenic mutations 
in the OncoKB database.

– The population frequency criterion is met if the variant 
in question is present in the human population with an allele 
frequency exceeding the threshold value of 0.00071% which 
was determined with ROC-analysis.

– The evolutionary occurrence criterion is based on 
the similarity of a mutated human gene sequence to the 
sequence of one or several of the orthologous genes. 
Orthologous genes are defined based on the phylogenetic 
tree topology and the graph structure built on the basis of 
the «cluster of orthologous group» method. This criterion is 
satisfied when there is a presence of the exact same variant 
in at least one orthologous sequence or when there is a 
presence of an amino acid from the same biochemical class 
with simultaneous match of the neighboring amino acids in 
an orthologous sequence.

If a variant fails to meet the criteria for oncogenicity and at 
most one other criterion, it is classified as a neutral variant by 
the algorithm. In all other cases, it is classified as pathogenic. 
The algorithm scheme is outlined in Figure 3.

The algorithm requires the variant position to be 
represented in population databases. Therefore, it cannot 
be located in problematic genomic regions, such as low-
mappability islands or repetitive regions.

The position of interest must also correspond to an aligned 
region in multiple sequence alignments of orthologous 
proteins. Since evolutionary criteria require the assessment 
of adjacent positions, these positions should also be well-
aligned.

Algorithm evaluation
Following the previous studies on the evaluation of 

prediction programs, we measured the sensitivity and 
specificity of our new algorithm as well as other widely 
used predictors by using a dataset of known benign and 
pathogenic variants from the ClinVar database [16, 17]. The 
new algorithm demonstrated high sensitivity (94.95%) and 
specificity (96.52%) of predicting the pathogenicity of variants 
from the dataset (Figure 4, Table 2).

Cross-validation
For each of the cross-sectional groups, the threshold 

population frequency was recalculated, distinguishing 
between pathogenic and neutral genetic variants. The values 
obtained were 0.00071%, 0.00074%, and 0.00077%.

In all three cases the population frequency and 
evolutionary occurrence were the most valuable features. 
The latter was set to "1" in case of an alternative amino 
acid, regardless of the neighboring residues, or in case of 
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Fig. 3. Scheme of the proposed algorithm
Рис. 3. Схема предлагаемого алгоритма

Fig. 4. Sensitivity and specificity of variant classification based on pathogenicity assessment
Рис. 4. Чувствительность и специфичность классификации вариантов на основе оценки патогенности

amino acid belonging to the same biochemical group as the 
alternative residue, with mandatory matching of neighboring 
amino acids between the human protein sequence and its 
ortholog.

The sensitivity, specificity, and accuracy of detecting 
pathogenic mutations, as well as area under the ROC curve 
and odds ratio for the cross-sectional groups are presented 
in the Table 3.

There were no statistically significant differences in the 
area under the ROC curve in between each pair of different 
steps (p > 0.05). The 95% confidence intervals for the odds 
ratios of each subgroup contained the odds ratio values of 
the two remaining subgroups.

The variant dataset, as well as the implementation of the 
algorithm in the Python programming language is available at 

https://gitverse.ru/d_bug/2024_missense_variant_
pathogenicity_assessment.

Discussion
Hereby, we present the new algorithm for assessing 

the pathogenicity of missense variants of BRCA1, BRCA2, 
DICER1, PIK3CA, and TP53 genes. Its main advantages 
are high specificity and sensitivity which were achieved by 
thorough revision of the existing predictors’ algorithms.

First, there is no generally accepted set of the most 
complete proteomes or genomes that would be used 
universally for evolution study, just as there is no algorithm 
to obtain such a set. The problem of standardizing a dataset 
selection for evolutionary study is not resolved yet. In this 
study, rather than selecting sequences randomly, we used 
BUSCO scores to obtain the most complete proteome 
sequence datasets, which minimizes the possibility of missing 
any orthologous genes. The instructions for assembling a 
custom database based on the BUSCO scores are outlined 
in the project repository: https://gitverse.ru/d_bug/ortologi.

Д.С. Буг, А.Н. Наркевич, А.В. Тишков, Н.В. Петухова 
Алгоритм оценки патогенности мутаций при опухолях на основе ретроспективного исследования



232

Сибирский журнал клинической и экспериментальной медицины
Siberian Journal of Clinical and Experimental Medicine

Table 2. Sensitivity, specificity, and accuracy of the tested algorithms
Таблица 2. Чувствительность, специфичность и точность исследованных алгоритмов

Name Se (CIl, CIh), % Sp (CIl, CIh), % Acc (CIl, CIh), %

Proposed algorithm 94.95 (88.61, 98.34) 96.52 (91.33, 99.04) 95.79 (92.17, 98.06)

AlphaMissense 88.89 (80.99, 94.32) 89.57 (82.48, 94.49) 89.25 (84.31, 93.06)

LRT 79.80 (70.54, 87.20) 89.57 (82.48, 94.49) 85.05 (79.55, 89.54)

FATHMM-MKL 96.97 (91.40, 99.37) 73.04 (63.97, 80.89) 84.11 (78.51, 88.74)

MetaSVM 79.80 (70.54, 87.20) 80.00 (71.52, 86.88) 79.91 (73.90, 85.06)

MutationTaster 88.89 (80.99, 94.32) 71.30 (62.12, 79.35) 79.44 (73.40, 84.65)

MetaLR 79.80 (70.54, 87.20) 73.91 (64.90, 81.66) 76.64 (70.38, 82.13)

Polyphen2 (HVAR) 79.80 (70.54, 87.20) 65.22 (55.77, 73.86) 71.96 (65.43, 77.87)

Polyphen2 (HDIV) 84.85 (76.24, 91.26) 60.87 (51.33, 69.84) 71.96 (65.43, 77.87)

SIFT 73.74 (63.93, 82.07) 58.26 (48.70, 67.39) 65.42 (58.63, 71.77)

FATHMM 90.91 (83.44, 95.76) 42.61 (33.44, 52.17) 64.95 (58.15, 71.33)

PROVEAN 47.47 (37.34, 57.76) 70.43 (61.21, 78.58) 59.81 (52.91, 66.44)

EVE 68.69 (58.59, 77.64) 45.22 (35.92, 54.77) 56.07 (49.15, 62.83)

M-CAP 92.93 (85.97, 97.11) 4.35 (1.43, 9.85) 45.33 (38.53, 52.26)

MutationAssessor 19.19 (11.97, 28.34) 19.13 (12.39, 27.52) 19.16 (14.11, 25.08)

Note: Se – sensitivity, Sp – specificity, Acc – accuracy, CIl – lower bound of the 95% confidence interval, CIh – the higher bound of the 95% confidence 
interval.

Table 3. Sensitivity, specificity, accuracy, area under the ROC curve, and odds ratio logarithm of each cross-validation step 
Таблица 3. Чувствительность, специфичность, точность, площадь под ROC-кривой и логарифм отношения шансов каждой из перекрестных групп

Measure Step 1 Step 2 Step 3

Se (CIl, CIh), % 92.79 (86.29, 96.84) 94.44 (88.30, 97.93) 94.69 (88.80, 98.03)

Sp (CIl, CIh), % 98.10 (93.29, 99.77) 96.26 (90.70, 98.97) 95.10 (88.93, 98.39)

Acc (CIl, CIh), % 95.37 (91.65, 97.76) 95.35 (91.61, 97.75) 94.88 (91.03, 97.42)

AUROC (CIl, CIh) 0.954 (0.927, 0.982) 0.954 (0.925, 0.982) 0.949 (0.919, 0.979)

ln(OR) (CIl, CIh) 6.40 (4.92, 8.07) 5.99 (4.79, 7.38) 5.76 (4.63, 7.06)

Note: Se – sensitivity, Sp – specificity, Acc – accuracy, AUROC – area under the ROC curve, ln(OR) – odds ratio natural logarithm, CIl – lower bound of the 
95% confidence interval, CIh – the higher bound of the 95% confidence interval.

Second, even the modern predictors don’t classify 
homologous sequences into orthologs and paralogs, which 
can lead to prediction errors [18]. In this algorithm, both the 
«cluster of orthologous group» method and the construction 
of phylogenetic trees were used to take only orthologous 
sequences into the analysis. To implement this method, 
we created our own tool, available at the project repository: 
https://gitverse.ru/d_bug/ortologi.

Third, predictors use full protein sequences for alignment, 
which can cause misalignment in case of multidomain 
proteins. As structural and functional compartments of a 
protein, domains of a single protein may have slightly different 
evolutionary history [19]. For the new algorithm, we have 
aligned the fragments of multidomain proteins to observe 
evolutionary history of each individual domain.

Using this approach, we have managed to get correct 
pathogenicity predictions for three known DICER1 mutations: 
p.E1705K, p.E1913K, and p.D1822V. In the original multiple 
sequence alignment, there were E, K, and N residues at the 
1705th position, E, K, L, and V at the 1814th position, D, V, 
C, K, and Y at the 1822nd position. After the realignment of 
DICER1 amino acid subsequences there were exclusively 
E, E, and D at the 1705th, 1813th, and 1822nd positions, 
respectively, which reflects complete conservation and 
immutability of these amino acids.

Fourth, the majority of predictors do not use population 
and cancer databases for decision-making. We obtained 
data from GnomAD and OncoKB and designed the criteria 
for them to use in classifying pathogenic and neutral variants. 
This introduces an “unfair advantage” of our algorithm, as it 
uses the OncoKB database, which might contain mutations 
already listed in ClinVar as pathogenic variants. However, 
after removing variants from the OncoKB database from the 
dataset, the updated sensitivity (94.12%, (86.80%, 98.06%)), 
specificity (96.52% (91.33%, 99.04%)), and accuracy (95.50% 
(91.63%, 97.92%)) values did not change significantly.

Finally, a significant problem of a great number of 
variant pathogenicity prediction programs is the use of 
machine learning algorithms for interpreting the results. 
While the utilization of these algorithms can lead to an 
improvement in sensitivity and specificity, it may incorporate 
an uninterpretative part into the prediction algorithm, which 
cannot be explained in biological or medical context. This fact 
is widely known and addressed as the “black box problem” – 
the difficulty of deciphering the reasoning behind an artificial 
intelligence system’s predictions or decisions [20].

The main drawback of the algorithm is that it focuses 
on cancer-related genes and cannot be used for variant 
prediction unrelated to cancer. The positions of the variants of 
interest should also be sufficiently represented by population 
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databases, as well as in the multiple alignment of orthologous 
sequences. However, fine-tuning of the population allele 
frequency limit as well as the rules for meeting the evolutionary 
criterion might help optimize the algorithm for usage in case 
of other genetic diseases.

It's important to note that the results of the algorithm need 
to be updated regularly to keep up with the growing amount 
of data on variant populations, oncogenicity, and evolution.

Conclusion
We have developed a highly specialized algorithm that 

can classify missense mutations based on their oncogenic 
potential, population frequency, and evolutionary context. 
This algorithm can be useful in complex diagnostic scenarios 
involving cancer, where it is impossible to determine the 
pathogenicity of a mutation using other methods.
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