https://doi.org/10.29001/2073-8552-2025-2857

Мочула Ольга Витальевна, e-mail: mochula.olga@gmail.com.

Взаимосвязь текстурных характеристик миокарда по данным магнитнорезонансной томографии с развитием неблагоприятных сердечнососудистых событий у пациентов с острым повреждением миокарда Мочула О.В.¹, Мальцева А.Н.¹, Мочула А.В.¹, Василевич К.В.¹, Воронина О.С.², Диль С.В.¹, Рябов В.В.^{1,2}, Завадовский К.В.¹

¹Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук (НИИ кардиологии Томского НИМЦ), 634012 Российская Федерация, Томск, ул. Киевская, 111а

²Сибирский государственный медицинский университет Минздрава России, 634050 Российская Федерация, Томск, ул. Московский тракт, 2

Аннотация

Введение. Магнитно-резонансная томография (MPT) сердца является золотым стандартом для оценки ремоделирования миокарда после инфаркта миокарда. Особое внимание уделяется тканевым характеристикам миокарда, оцениваемым с помощью отсроченного контрастного усиления (ОКУ). Текстурные показатели неоднородности ОКУ являются новым количественным параметром, отражающим структурную гетерогенность изменений ткани миокарда левого желудочка (ЛЖ).

Цель исследования: изучение взаимосвязи текстурных параметров, оцененных с помощью количественной оценки неоднородности сигнала МРТ с ОКУ, в аспекте развития неблагоприятных сердечно-сосудистых событий у пациентов с острым повреждением миокарда.

Материал и методы. В данное ретроспективное исследование были включены 108 пациентов, госпитализированных в отделение неотложной кардиологии с диагнозом «первичный острый инфаркт миокарда (ОИМ) с подъемом или без подъема сегмента ST». Была определена комбинированная конечная точка (КТ), включающая клинические исходы: сердечно-сосудистая смерть, общая смерть, нефатальный инфаркт миокарда, нефатальное острое нарушение мозгового кровообращения. Критерии включения: проведение МРТ сердца с контрастированием в первые 4-7 дней от момента госпитализации; МР-ЛЖ; признаки острого ишемического повреждения миокарда изображений. МР-признаки удовлетворительное острого качество ишемического повреждения: повышенный МР-сигнал на Т2-взвешенные изображения (ВИ), которому соответствует по локализации отсроченное контрастирование сегмента / сегментов, имеющих ишемический распределения контраста. Количественный анализ МРТ сердца был проведен с использованием специализированного программного обеспечения ДЛЯ постобработки CVI42 (Circle cardiovascular imaging, Канада). Анализ текстурных характеристик миокарда был осуществлен с помощью приложения 3D Slicer 5.2.2 (The slicer community, США). Для анализа были использованы изображения с ОКУ, отдельно для каждого среза извлечены текстурные (ИC): характеристики неоднородности интенсивности сигнала зона повреждения миокарда ЛЖ, интактный миокард, весь ЛЖ, включающий поврежденный и интактный миокард.

Результаты. Средний возраст пациентов составил $59,56 \pm 10,7$ года, мужчины составляли 75% (n = 81). ОИМ с подъемом сегмента ST встречался у 89,3% пациентов общей группы. Период наблюдения составил 1095 ± 23 дня. Данные о КТ получены у 108 пациентов (100% выборки). Были сформированы две группы: пациенты без сердечно-сосудистых событий («-HCCC») и пациенты с сердечно-сосудистыми событиями («+HCCC»), достигнувшие КТ. Анализ тканевых характеристик миокарда ЛЖ, оцениваемых в отсроченную фазу контрастирования, не показал наличия различий в исследуемых группах

практически по всем показателям, за исключением глобальной величины повышения ИС ЛЖ на Т2-ВИ, который был статистически значимо ниже в группе «+НССС». Количественный анализ неоднородности ИС всего ЛЖ с использованием текстурных характеристик позволил выявить различия по статистикам первого порядка с более высокими значениями данных индексов в группе «+НССС». Пациенты с наличием НССС в периоде наблюдения характеризовались более асимметричной и сложной текстурой сигнала с наличием резких переходов вариации интенсивности серого, высокой нерегулярностью оттенков серого, меньшей протяженностью однородных областей и длин серий, а также преобладанием мелких неоднородных участков. Анализ интактных участков миокарда ЛЖ также продемонстрировал более высокие неоднородность и нерегулярность оттенков серого с высоким количеством мелких неоднородных участков.

Заключение. Показатели гетерогенности, оцененные с помощью МРТ, отражают изменения, происходящие в миокарде ЛЖ после ОИМ, связаны с функциональными показателями сердца и могут рассматриваться в качестве прогностических факторов неблагоприятного течения. Учитывая ограничения данного исследования, необходимы дальнейшие исследования для изучения связи между МРТ ЛЖ, гетерогенностью ткани миокарда и неблагоприятными событиями после ИМ.

Ключевые слова: неоднородность; гетерогенность; тканевые характеристики; текстурный анализ; энтропия; повреждение миокарда; радиомика.

Финансирование: исследование выполнено за счет гранта Российского научного фонда № 25-25-00434, https://rscf.ru/project/25-25-00434/

Соответствие принципам этики: одобрено комитетом по биомедицинской этике НИИ кардиологии Томского НИМЦ на заседании № 210 от 18.02.2021 г.

Для цитирования: Мочула О.В., Мальцева А.Н., Мочула А.В., Василевич К.В., Воронина О.С., Диль С.В., Рябов В.В., Завадовский К.В. Взаимосвязь текстурных характеристик миокарда по данным магнитно-резонансной томографии с развитием неблагоприятных сердечно-сосудистых событий у

пациентов с острым повреждением миокарда. Сибирский журнал клинической и экспериментальной медицины.

https://doi.org/10.29001/2073-8552-2025-2857

The association between myocardial texture characteristics on cardiac magnetic resonance and the development of major adverse cardiovascular events in patients with acute myocardial injury

Mochula O.V.¹, Maltseva A.N.¹, Mochula A.V.¹, Vasilevich K.V.¹, Voronina O.S.², Dil S.V¹., Ryabov V.V.^{1,2}, Zavadovsky K.V.¹

¹Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC), 111a, Kievskaya str., Tomsk, 634012, Russian Federation

²Siberian State Medical University (SSMU), 2, Moscovsky Trakt, Tomsk, 634050, Russian Federation

Abstract

Introduction. Cardiac magnetic resonance (CMR) is the gold standard for assessing myocardial remodeling after myocardial infarction. Particular attention is paid to myocardial tissue characteristics assessed using late gadolinium enhancement (LGE). Textural heterogeneity parameters of LGE are a novel quantitative metric that reflects the structural heterogeneity of left ventricular (LV) myocardial tissue changes.

Aim: To investigate the association between textural parameters, assessed by quantitative analysis of signal intensity heterogeneity on late gadolinium enhancement CMR, and the development of major adverse cardiovascular events (MACE) in patients with acute myocardial injury.

Material and methods. This retrospective study included 108 patients admitted to the emergency cardiology department with a diagnosis of primary ST-elevation or non-ST-elevation myocardial infarction (STEMI or NSTEMI). A composite primary

endpoint was established, which included the following clinical outcomes: cardiovascular death, all-cause death, non-fatal myocardial infarction, and non-fatal acute stroke. Inclusion criteria were: 1) performance of contrast-enhanced CMR within 4–7 days of hospitalization; 2) CMR findings consistent with acute ischemic injury of the LV; and 3) satisfactory image quality. CMR criteria for acute ischemic injury included: a high-intensity signal on T2-weighted images (T2WI) with colocalized LGE in a segment(s) demonstrating an ischemic pattern of contrast distribution. Quantitative CMR analysis was performed using the dedicated post-processing software CVI42 (Circle Cardiovascular Imaging, Canada). Myocardial texture analysis was conducted using the 3D Slicer application, version 5.2.2 (The Slicer Community, USA). For the analysis, LGE images were used. From each slice, textural features of signal intensity (SI) heterogeneity were extracted separately for the following regions of interest (ROIs): the LV myocardial injury zone, intact myocardium, and the entire LV (comprising both injured and intact myocardium).

Results. The mean age of the patients was 59.56 ± 10.7 years, with 75% (n = 81) being male. STEMI was present in 89.3% of the entire cohort. The follow-up period was 1095 ± 23 days. Follow-up data were obtained for all 108 patients (100% of the sample). Based on the occurrence of the primary endpoint, two groups were formed: the group without cardiovascular events ("-MACE") and the group that reached the endpoint ("+MACE"). Analysis of LV myocardial tissue characteristics assessed in the LGE phase revealed no significant differences between the study groups for almost all parameters, with the exception of the global LV SI elevation on T2-WI, which was significantly lower in the "+MACE" group. Quantitative analysis of SI heterogeneity across the entire LV using textural features revealed differences in first-order statistics, with higher values of these indices in the "+MACE" group. Patients who experienced a MACE during the follow-up period were characterized by a more asymmetric and complex signal texture, featuring abrupt variations in gray-level intensity, higher gray-level irregularity, shorter lengths of homogeneous areas and run lengths, and a predominance of small heterogeneous areas. Analysis of the

intact myocardium in the LV also demonstrated higher heterogeneity and gray-level irregularity, with a high number of small heterogeneous regions.

Conclusion. Heterogeneity parameters assessed by CMR reflect the changes occurring in the LV myocardium after MI, are associated with cardiac functional indices, and may be considered prognostic factors for an adverse clinical course. Given the limitations of this study, further research is needed to investigate the relationship between LV tissue characteristics on CMR, entropy, and adverse outcomes after acute myocardial injury.

Keywords: heterogeneity; tissue characteristics; texture analysis; entropy; myocardial injury; radiomics.

Funding: the study was funded by a grant from the Russian Science Foundation No. 25-25-00434, https://rscf.ru/project/25-25-00434/.

Compliance with ethical standards: the study was approved by the ethics committee of Cardiology Research Institute, Tomsk NRMC (protocol No. 210 from 18.02.2021).

For citation: Mochula O.V., Maltseva A.N., Mochula A.V., Vasilevich K.V., Voronina O.S., Dil S.V., Ryabov V.V., Zavadovsky K.V. The association between myocardial texture characteristics on cardiac magnetic resonance and the development of major adverse cardiovascular events in patients with acute myocardial injury. *Siberian Journal of Clinical and Experimental Medicine*.

https://doi.org/10.29001/2073-8552-2025-2857

Введение

Болезни системы кровообращения (БСК) являются ведущей причиной смертей у взрослого населения Российской Федерации. В последние годы доля БСК в структуре причин смертности составляет > 40% [1]. Заболеваемость инфарктом миокарда (ИМ) растет и остается одной из основных причин смерти и инвалидности во всем мире. Несмотря на очевидный прогресс в лечении острого коронарного синдрома (ОКС), среднесрочный и долгосрочный прогноз остается в целом неблагоприятным. По данным наблюдательных исследований,

частота значимых сердечно-сосудистых осложнений из-за постепенной и обширной потери ткани миокарда после инфаркта, сопровождающейся структурным и электрофизиологическим ремоделированием (сердечная смерть, повторный ИМ, ишемический инсульт) после ИМ, составляет ~20% [2]. Следовательно, пациенты после ИМ относятся к категории очень высокого риска осложнений, что диктует необходимость диспансерного наблюдения и проведения эффективной вторичной профилактики [1], а оценка риска повторных сердечно-сосудистых событий и долгосрочных осложнений имеет критически важное значение для определения тактики лечения и стратегий профилактики.

Традиционно стратификация риска основывалась на инвазивных методах, таких как коронарная ангиография. Хотя эти методы высокоточны, они несут существенные риски и ограничения, включая проблемы доступности и возможность процедурных осложнений. Следовательно, растет интерес к разработке и внедрению неинвазивных методов для прогностической оценки.

Методы, такие как эхокардиография, магнитно-резонансная томография (МРТ) сердца и радионуклидная визуализация, предоставляют ценную информацию о состоянии сердечно-сосудистой системы без необходимости инвазивных процедур. МРТ является золотым стандартом для оценки ремоделирования миокарда после ИМ. Особое внимание уделяется тканевым характеристикам миокарда, оцениваемых cпомощью отсроченного контрастного усиления (ОКУ). Текстурные показатели неоднородности ОКУ являются новым количественным параметром, отражающим структурную гетерогенность изменений ткани миокарда левого желудочка (ЛЖ) [3]. У пациентов с острым ишемическим повреждением миокарда выделяют три области: ядро инфаркта, пограничную зону и интактный миокард. Пограничная зона, которая состоит из зон сохранного миокарда и фиброзной ткани, увеличивает степень негомогенной анизотропии. Это приводит к повышенному риску электролитического сопряжения, образованию областей с нарушением и замедленной проводимостью, создавая тем самым факторы для развития неблагоприятных сердечно-сосудистых событий (HCCC) [4]. Эти три области можно выявлять на изображениях с ОКУ, а текстурные значения тканевой неоднородности миокарда, выявленные при помощи МРТ, могут отражать региональную структурную гетерогенность и рассматриваться в качестве предикторов неблагоприятного течения заболевания.

Цель исследования: изучение взаимосвязи текстурных параметров, оцененных с помощью количественной оценки неоднородности сигнала МРТ с ОКУ, в аспекте развития НССС у пациентов с острым повреждением миокарда.

Материал и методы

Пациенты и дизайн исследования

В данное ретроспективное исследование были включены 108 пациентов, госпитализированных в отделение неотложной кардиологии с диагнозом «первичный острый ИМ (ОИМ) с подъемом или без подъема сегмента ST». Критерии включения: проведение МРТ сердца с контрастированием в первые 4—7 дней от момента госпитализации; МР-признаки острого ишемического повреждения миокарда ЛЖ; удовлетворительное качество изображений, необходимое для их дальнейшего количественного анализа.

Конечная точка

Была сформирована «жесткая» конечная точка (КТ), включающая такие клинические исходы, как сердечно-сосудистая смерть, общая смерть, нефатальный ИМ, нефатальное острое нарушение мозгового кровообращения. Информация была получена из информационной системы учреждения. Период наблюдения составил 36 мес.

Магнитно-резонансная томография сердца

Всем пациентам на 4—7-й день после поступления была проведена МРТ сердца с контрастированием. Исследование было выполнено на томографе с напряженностью магнитного поля 1,5 Тл Vantage Titan (Toshiba Medical Systems

Corporation, Япония). В качестве контрастного препарата был использован «Гадобутрол» (Гадовист, Вауег, Германия) в дозе 0,1-0,2 мл/кг. Протокол MPсканирования состоял частей. Ha ИЗ двух первом этапе получали преконтрастные изображения: кино-режим (импульсная последовательность (ИП) GRE-SSFP (steady-state free precession, параметры сканирования: время повторения (TR) = 3.7 мс, время эхо (TE) = 1.9 мс, угол поворота $(FA) = 72^{\circ}$, $90/160^{\circ}$, поле зрения (FOV) = 38×35 мм, матрица 240×128 пикселей) в стандартных проекциях; T2-взвешенные изображения (ВИ) (ИП TSE (turbo spin echo)) (параметры сканирования: TR = 1000 мc, TE = 24 мc, $FA = 90/160^{\circ}$, $FOV = 37 \times 35$ мм, матрица 256×256 пикселей) по короткой оси ЛЖ. Второй этап – получение постконтрастных отсроченных изображений (через 10-15 мин) в T1-ВИ в ИП GRE в режиме «Inversion recovery» с подбором времени инверсии (параметры сканирования: TR = 9.1 мс, время инверсии (TI) = 260– 340 мс, TE = 17 мс, $FA = 17^{\circ}$, $FOV = 37 \times 35 \text{ мм}$, матрица 256×256 пикселей).

Количественный анализ МРТ сердца проводили с использованием специализированного программного обеспечения для постпроцессинга CVI42 (Circle Cardiovascular Imaging, Канада). Количественно оценивали размеры камер сердца и функции желудочков (масса миокарда ЛЖ (ММ ЛЖ), конечнодиастолический (КДО) и конечно-систолический (КСО) объемы ЛЖ и правого желудочка (ПЖ), фракция выброса (ФВ) ЛЖ и ПЖ, используя метод полуавтоматической обводки контуров эндокарда и эпикарда ЛЖ, эндокарда ПЖ. Для определения объема левого предсердия использовали 2/4-камерный монопланарный анализ. Данные МРТ сердца оценивали в соответствии с 17-сегментной моделью Американской ассоциации кардиологов.

Используя метод полуавтоматической обводки контуров эндокарда и эпикарда, были установлены следующие МР-параметры, оценивающие тканевые характеристики миокарда: величина повышенного МР-сигнала на Т2-ВИ (соотношение интенсивности сигнала (ИС) миокарда к ИС скелетной мускулатуры > 2).; размеры ОКУ в режиме «Inversion recovery», выраженные в процентах и граммах от ММ ЛЖ, с использованием алгоритма 5-SD (методика

«5 standard deviation»); серая зона ИМ, выраженная в процентах и граммах от ММ ЛЖ, с использованием алгоритма 2-SD (методика «2 standard deviation»). МР-признаки острого ишемического повреждения: повышенный МР-сигнал на Т2-ВИ, которому соответствует по локализации отсроченное контрастирование сегмента / сегментов, имеющих ишемический тип распределения контраста.

Показатели текстурного анализа изображений с отсроченным контрастным усилением

Анализ текстурных характеристик миокарда был проведен с помощью приложения 3D Slicer 5.2.2 (The Slicer Community, США). Для анализа были использованы изображения с ОКУ, отдельно для каждого среза извлечены текстурные характеристики неоднородности интенсивности сигнала (ИС): поврежденный миокард ЛЖ, интактный миокард и весь ЛЖ, включающий поврежденный и интактный миокард.

Показатели, определяемые с помощью текстурного анализа (ТА), характеризующие неоднородность ИС:

- 1. Статистики первого порядка (first-order statistics), оценивающие распределение интенсивностей пикселей без учета их пространственного расположения: энтропия (entropy), энергия (energy), стандартное отклонение (standard deviation), размах (range), квартильный коэффициент дисперсии (interquartile range).
- 2. Текстурные признаки (texture features), анализирующие пространственные взаимосвязи пикселей: матрица совстречаемости серых уровней (GLCM grey-level co-occurrence matrix) (контраст (contrast), неоднородность (homogeneity / inverse difference moment), дисперсия (variance), неоднородность кластера (cluster shade, cluster prominence); матрица длин серий (GLRLM grey-level run-length matrix) (длинная акцентуация серий (long run emphasis), короткая акцентуация серий (short run emphasis), неоднородность длин серий (run-length non-uniformity); матрица размеров зон (GLSZM grey-

level size zone matrix) (неоднородность зон (zone size non-uniformity), малая акцентуация зон (small zone emphasis).

Статистический анализ данных

Статистический анализ данных проводили с использованием пакетов программ STATISTICA (StatSoft, Inc., v.10.01011.0), Jamovi (version 2.2.5) (Open Sourse). Количественные показатели представлены средним значением и стандартным отклонением при нормальном распределении (критерий Колмогорова – Смирнова) или медианой и межквартильным интервалом – при отсутствии нормального распределения. Категориальные данные представлены абсолютными И относительными частотами, (%). Для сравнения nкатегориальных показателей в двух независимых группах применяли χ^2 критерий Пирсона. Значимость различий количественных показателей в двух независимых группах оценивали с помощью критерия Манна – Уитни. Критический уровень значимости составлял 0,05.

Исследование соответствует положениям Хельсинкской декларации Всемирной медицинской ассоциации. Информированное письменное согласие было получено от всех пациентов. Проведение исследования одобрено комитетом по биомедицинской этике НИИ кардиологии Томского НИМЦ на заседании № 210 от 18.02.2021 г.

Результаты

Клиническая характеристика пациентов

Средний возраст пациентов составил $59,56 \pm 10,7$ года, мужчины составляли 75% (n=81). ОИМ с подъемом сегмента ST встречался в 89,3% всей группы. Период наблюдения составил 1095 ± 23 дня. Клиническая характеристика пациентов представлена в таблице 1.

Данные о КТ получены у 108 пациентов (100% выборки). Всего у 10 (10,2%) пациентов было установлено достижение комбинированной КТ, из них: сердечно-сосудистая смерть -2 (20%), общая смерть -2 (20%), нефатальный

ИМ - 1 (10%), нефатальное острое нарушение мозгового кровообращения по ишемическому типу – 5 (50%).

На основании достижения КТ были сформированы две группы: без сердечно-сосудистых событий («–НССС») и группа пациентов, достигнувших КТ («+НССС»). Подъем сегмента ST значимо выше встречался в группе без сердечно-сосудистых событий. Согласно другим демографическим, клиническим и лабораторным показателям, различий выявлено не было (см. табл. 1).

Таблица 1. Клиническая характеристика пациентов

Table 1. Clinical characteristics of patients

Показатели	Все пациенты,	-НССС,	+HCCC,	р
Показатели	n = 108	n = 98	n = 10	Р
Мужчины, <i>n</i> (%)	81 (75)	74 (75)	7 (70)	0,7
Возраст, лет	$59,56 \pm 10,7$	$59,16 \pm 10,217$	$63,5 \pm 14,767$	0,1
Площадь поверхности тела (формула Мостеллера), м ²	$1,93 \pm 0,34$	$1,93 \pm 0,346$	$1,93 \pm 0,232$	0,874
САД при поступлении, мм рт. ст.	137 (120; 154)	138 (120,75; 154,25)	134 (118; 150)	0,683
ДАД при поступлении, мм рт. ст.	80 (73; 90)	80 (73,75; 90)	82 (71; 90)	0,967
Риск GRACE, %	4 (3; 4)	4 (3; 4)	4 (2; 4)	0,417
СКФ по ЕРІ, мл/мин/1,73 м ²	75,97 (63,55; 90,75)	74,5 (63,85; 90,25)	81 (60,25; 96)	0,737
Частота сердечных сокращений, уд/мин	71 (63,5; 82,25)	71 (62; 80)	82 (69; 87)	0,174
Частота дыхательных движений в минуту	16 (16; 18)	16 (16; 18)	16 (14,75; 16)	0,1
SpO ₂ , %	97 (96; 98)	97 (96; 98)	97 (96; 98)	0,75
КФК-МВ максимальное, ед/л (референсное значение 0,0–25,0 ед/л)	40,25 (15,775; 137,13)	40,25 (10,125; 137,13)	39,85 (26,75; 152,25)	0,450
Тропонин I максимальное, нг/мл (референсное значение 0,00–0,04 нг/мл)	4,05 (0,00925; 25)	4,768 (0,00375; 25)	0,815 (0,091; 5,7)	0,664
Подъем сегмента ST, <i>n</i> (%)	92 (89,3)	86 (87,8)	6 (60)	0,04

Примечание: ДАД – диастолическое артериальное давление, КФК-МВ – креатинкиназа-МВ, НССС – неблагоприятные сердечно-сосудистые события, САД – систолическое артериальное давление, СКФ по ЕРІ – скорость клубочковой фильтрации по ЕРІ, SpO₂ –периферическая кислородная сатурация.

Данные магнитно-резонансной томографии сердца с контрастированием

Медианное значение ФВ ЛЖ в общем в исследуемой группе было незначительно ниже нормальных значений 52 (43; 62) %. При этом пациенты с «+HCCC» характеризовались более низкими значениями медианы ФВ ЛЖ по сравнению с группой «-HCCC» (52 (42,5; 62,25) против 45 (43,25; 57,7) %, p = 0,009). Также в группе «+HCCC» наблюдались более низкие значения медианы ММ ЛЖ, конечно-диастолический индекс (КДИ) ЛЖ, ударного объема (УО) и сердечного выброса по сравнению с пациентами без НССС в периоде наблюдения.

При оценке состояния ПЖ было выявлено, что медианы объемных показателей ПЖ (КДО, ФВ, УО, сердечный выброс) были также значимо ниже у пациентов с наличием НССС (табл. 2).

Анализ тканевых характеристик миокарда ЛЖ, оцениваемых в отсроченную фазу контрастирования, не показал наличия статистически значимых различий в исследуемых группах практически по всем показателям, за исключением глобальной величины повышения ИС ЛЖ на Т2-ВИ, медиана которого была значимо ниже в группе «+НССС» (см. табл. 2).

Таблица 2. Показатели магнитно-резонансной томографии сердца с контрастированием

Table 2. Contrast-enhanced cardiac MRI parameters

Показатель	Все пациенты (n = 108)	-HCCC (n = 98)	+HCCC (<i>n</i> = 10)	p
ММ ЛЖ, г	138 (117; 164)	139 (118;168,5)	120,8 (111,25; 130,75)	0,0007
ИММ ЛЖ, Γ/M^2	70,66 (61,29; 80,42)	71,36 (62,46; 82,52)	61,05 (56,07; 67,7)	0,00006
КДО ЛЖ, мл	136,5 (104,33; 155)	136,5 (104,08; 155,5)	133 (108,5; 147,75)	0,0577
$KДИ ЛЖ, мл/м^2$	67,94 (57,22; 80,13)	68,38 (57,75; 79,22)	62,75 (52,2; 86,08)	0,0477
КСО ЛЖ, мл	62,5 (43,63; 81,25)	62 (44,75; 79,75)	65 (41,25; 81,25)	0,97086
КСИ ЛЖ, $MЛ/M^2$	31,73 (22,97; 41,33)	31,45 (22,99; 41,84)	33,22 (20,78; 36,5)	0,93912
ФВ ЛЖ, %	52 (43; 62)	52 (42,5; 62,25)	45 (43,25; 57,7)	0,00916
УО ЛЖ, мл	65,5 (55; 79,75)	66 (55,75; 80)	56 (49,75; 75,25)	0,0001
СВ ЛЖ, л/мин	4,7 (4; 5,5)	4,7 (4,07; 5,5)	4,1 (3,55; 5,08)	0,0002
СИ ЛЖ, л/мин/м ²	2,46 (2; 2,8)	2,5 (2,08; 2,82)	2,3 (1,75; 2,5)	0,00031
КДО ПЖ, мл	109 (91,75; 130,5)	110 (93; 129,75)	102 (84; 134,5)	0,01251
КДИ ПЖ, $m\pi/m^2$	56,27 (48,76; 66,49)	56,91 (48,82; 66,57)	54,5 (47,83; 60,05)	0,00527

КСО ПЖ, мл	51,5 (40; 61,5)	51,5 (40; 61)	53 (44,51; 79)	0,3446
КСИ ПЖ, $MЛ/M^2$	26,25 (21,47; 30,28)	26,15 (21,21; 30,14)	29,85 (22,71; 39,11)	0,281
ФВ ПЖ, %	55 (48; 60)	55 (49; 60)	41,5 (34,28; 55,5)	0,0001
УО ПЖ, мл	57,5 (44,75; 73,25)	58,5 (49,25; 73,75)	40 (29; 66,25)	0,000000
СВ ПЖ, л/мин	4,25 (3,4; 5,13)	4,3 (3,6; 5,1)	2,75 (2,32; 5)	0,000000
СИ ЛЖ, л/мин/м ²	2,2 (1,78; 2,52)	2,2 (1,9; 2,5)	1,35 (1,3; 2,75)	0,000005
ОЛП 2ch, мл	62,51 (50,2; 76,47)	61,36 (50,15; 76,69)	62,91 (50,77; 69,1)	0,12811
ОЛП 4сh, мл	67,9 (57,54; 86,42)	69,7 (57,59; 87,09)	66,98 (57,65; 72,2)	0,2531
ОПП 4сh, мл	59,52 (47,89; 74,55)	61,41 (47,92; 74,9)	51,9 (47,46; 67,3)	0,0271
ОКУ ММ ЛЖ, мл	25,875 (14,7; 42,78)	26,065 (17,585; 43,133)	12,305 (8,635; 36,58)	0,4351
ОКУ ММ ЛЖ, г	27,175 (15,4; 44,9)	27,37 (18,46; 45,285)	12,915 (9,065; 38,41)	0,4355
ОКУ ММ ЛЖ, %	17,18 (12,2; 25,32)	17,9 (12,8175; 24,913)	9,825 (7,385; 28,555)	0,727
МВО, мл	0,19 (0; 1,83)	0,21 (0,01; 1,92)	0,15 (0; 0,982)	0,807
МВО, г	0,2 (0; 1,92)	0,22 (0,01; 2,01)	0,155 (0; 1,03)	0,807
Серая зона ИС, мл	30,615 (23,8; 36,63)	30,665 (23,675; 37,938)	29,09 (24,5625; 32,462)	0,147
Серая зона ИС, г	32,13 (25; 38,45)	32,205 (24,845; 39,84)	30,545 (25,785; 34,087)	0,142
Серая зона ИС, %	21,09 (17,8; 24,65)	21,09 (17,4825; 24,945)	21,365 (19,215; 22,97)	0,483
Повышенная ИС Т2-ВИ, мл	39,875 (28,6; 58,06)	41,325 (30,25; 59,33)	28,36 (23,5575; 36,852)	0,0048
Повышенная ИС Т2-ВИ, г	40,805 (29,8; 60,96)	42,935 (31,15; 62,297)	29,775 (24,7225; 38,695)	0,0074
Повышенная ИС Т2-ВИ, %	31,48 (22,9; 40,32)	32,465 (23,365; 40,718)	25,27 (17,2; 31,46)	0,08

Примечание: 2ch — 2-камерное, 4ch — 4-камерное, BИ — взвешенное изображение, ИММ — индекс массы миокарда, ИС — интенсивность сигнала, КДИ — конечный-диастолический индекс, КДО — конечно-диастолический объем, КСИ — конечно-систолический индекс, КСО — конечно-систолический объем, ЛЖ — левый желудочек, МВО — микроваскулярная обструкция, ММ — масса миокарда, ММ ЛЖ — масса миокарда левого желудочка, ОКУ — отсроченное контрастное усиление, ОЛП — объем левого предсердия, ОПП — объем правого предсердия, ПЖ — правый желудочек, РИ ММ ЛЖ — размер инфаркта от массы миокарда левого желудочка, СВ — сердечный выброс, СИ — сердечный индекс, УО — ударный объем, ФВ — фракция выброса.

Качественный анализ изображений не позволил выявить различий показателей неоднородности ИС (неравномерность границ, изолированные островки рубца / некроза, различная плотность рубцовой ткани, неоднородность ткани по периферии участков фиброза) (табл. 3).

При этом количественный анализ неоднородности ИС всего ЛЖ с использованием текстурных характеристик позволил выявить различия по статистикам первого порядка (энергия, энтропия, квартильный коэффициент дисперсии, размах, дисперсия) с более высокими значениями данных индексов

в группе «+HCCC» (p < 0,05). Пациенты с наличием HCCC в периоде наблюдения характеризовались более асимметричной и сложной текстурой сигнала с наличием резких переходов вариации интенсивности серого, высокой нерегулярностью оттенков серого, меньшей протяженностью однородных областей и длин серий, а также преобладанием мелких неоднородных участков (p < 0,05).

Область поврежденного миокарда ЛЖ в группе «+HCCC» отличалась более однородным сигналом, который фактически в два раза был выше (3.61e+9 (1.52e+9; 7.03e0+9) против «-HCCC» – 7.35e+9 (5.43e+9; 1.02e+10), p = 0,001) с тенденцией к меньшей сложности структуры (p = 0,058).

Анализ интактных участков миокарда ЛЖ продемонстрировал более высокие неоднородность и нерегулярность оттенков серого с высоким количеством мелких неоднородных участков (p < 0.05) (см. табл. 3).

Таблица 3. Показатели неоднородности интенсивности сигнала на изображениях в отсроченную фазу контрастирования

Table 3. Myocardial signal intensity heterogeneity parameters on late gadolinium enhancement images

Показатель	Все пациенты, $n = 108$	–HCCC, n = 98	+HCCC, n = 10	p
Неравномерность границ, n (%)	51 (47,2)	45 (45,9)	6 (60)	0,51
Изолированные островки рубца / некроза, n (%)	23 (21,3)	22 (22,45)	1 (10)	0,69
Различная плотность рубцовой ткани, $n(\%)$	92 (85,2)	85 (86,7)	7 (70)	0,17
Неоднородность ткани по периферии участков фиброза, <i>n</i> (%)	57 (52,8)	52 (53,1)	5 (50)	1
	E	Весь ЛЖ		
FO Energy	5.00e+9 (2.82e+9; 9.71e+9)	4.82e+9 (2.86e+9; 9.20e0+9)	8.66e+9 (2.86e+9; 1.09e+10)	0,0058
FO Entropy	5,964 (5,508; 6,452)	5,944 (5,486; 6,424)	6,113 (5,742; 6,454)	0,001
FO InterquartileRange	672,635 (411,688; 920,922)	657,688 (410,375; 918,384)	697,699 (551,636; 999,352)	0,0187
FO Range	2676,458 (2091,531; 3556,952)	2622,5 (2087,844; 3587,746)	3097,813 (2318,786;	0,0445

			3408,113)		
	328334,954	299247,215	367726,102		
FO Variance	(142718,95;	(139662,354;	(248400,227;	0,0106	
	568862,264)	563425,547)	544839,739)	,	
GLCM	1.84e+7 (4.22e+6;	1.67e+7 (3.92e+6;	2.88e+7 (1.17e+7;		
ClusterProminence	5.51e+7)	5.61e0+7)	4.47e0+7)	0,0083	
Cluster roundence	,	81202,884	144986,873		
GLCM ClusterShade	85654,26 (29112,7;	(28814,196;	(44950,042;	0,0257	
GLCIVI ClusterShade	243129,08)	242779,515)	228973,248)	0,0237	
	37,793 (22,579;	38,235 (22,565;	34,693 (24,918;		
GLCM Contrast	, , , , , ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48,914)	0,3589	
CLCM	60,033)	63,274)	, ,		
GLCM	4,353 (3,317; 5,55)	4,353 (3,306; 5,629)	4,301 (3,511;	0,2104	
DifferenceAverage	. , , , , , , , , , , , , , , , , , , ,		5,082)	-	
GLCM	3,564 (3,23; 3,907)	3,564 (3,226; 3,945)	3,537 (3,312;	0,2252	
DifferenceEntropy			3,787)		
GLCM	17,276 (10,815;	17,498 (10,657;	14,741 (11,923;	0,5594	
DifferenceVariance	29,819)	30,408)	21,508)	0,5574	
GLCM InverseVariance	0,245 (0,212; 0,295)	0,245 (0,212; 0,296)	0,237 (0,208;	0,0445	
GLEIVI IIIVEISE VAITAILEE	0,243 (0,212, 0,273)	0,243 (0,212, 0,230)	0,284)	0,0443	
GLRLM	1,343 (1,261; 1,45)	1,343 (1,267; 1,452)	1,307 (1,257;	0,0167	
LongRunEmphasis	1,343 (1,201, 1,43)	1,343 (1,207, 1,432)	1,417)	0,0107	
GLRLM	2257 222 (1995 079)	2272 427 (1000 004)	1965,548		
RunLengthNonUniformi	2356,233 (1885,068;	2373,427 (1900,884;	(1777,754;	0,2824	
ty	2862,224)	2898,268)	2442,091)	,	
GLRLM			0,942 (0,925;	0.0001	
ShortRunEmphasis	0,937 (0,922; 0,949)	0,937 (0,922; 0,948)	0,949)	0,0231	
GLSZM			. ,		
SizeZoneNonUniformit	1241,168 (833,603;	1263,501 (837,365;	1109,672 (837,033;	0,7868	
у	1621,845)	1661,269)	1439,731)	0,7000	
GLSZM			0,804 (0,773;		
SmallAreaEmphasis	0,798 (0,754; 0,829)	0,798 (0,752; 0,829)	0,828)	0,03	
Sman real inpitasis	Учас	гки ОКУ ЛЖ	0,020)		
70.7	3.90e+9 (1.59e+9;	3.61e+9 (1.52e+9;	7.35e+9 (5.43e+9;	0.004	
FO Energy	7.27e+9)	7.03e0+9)	1.02e+10)	0,001	
FO Entropy	6,274 (5,72; 6,668)	6,196 (5,666; 6,678)	6,394 (6,32; 6,56)	0,1032	
* ·	801,9 (535,036;	796,663 (528,458;	828,167 (783,662;		
FO InterquartileRange	1108,122)	1108,122)	1049,875)	0,1032	
	2673,667 (1881,736;	2517,475 (1849,313;	2944,688 (2753;		
FO Range	, , , , , , , , , , , , , , , , , , , ,		, , ,	0,0617	
-	3487,688)	3510,344)	3399,063)		
EO Wasianaa	305818,592	294681,559	370228,611	0.0727	
FO Variance	(152918,915;	(149481,088;	(319204,062;	0,0737	
G. G.	607560,758)	607560,758)	528358,205)		
GLCM	9.94e+6 (2.85e+6;	8.61e+6 (2.52e+6;	1.61e+7 (1.31e+7;	0,0589	
ClusterProminence	3.77e+7)	3.77e0+7)	2.81e0+7)		
	6792,836 (-2070,21;	7116,253 (-1595,997;	5308,809 (-		
GLCM ClusterShade	29104,93)	29819,488)	9540,786;	0,3798	
	27104,73)	27017,400)	13470,534)		
CL CM Contract	65,275 (40,736;	65,275 (38,439;	64,144 (54,165;	0.2486	
GLCM Contrast	108,708)	108,708)	100,672)	0,2486	
GLCM	6,075 (5,5)		6,075 (5,597;	0.2252	
DifferenceAverage	6,003 (4,771; 7,957)	6,003 (4,696; 7,957)	7,392)	0,2252	
GLCM	2.051 (2.525 4.201)	2.027 (2.52, 4.201)	3,979 (3,811;	0.1007	
DifferenceEntropy	3,951 (3,535; 4,301)	3,927 (3,53; 4,301)	4,217)	0,1897	
GLCM	24,548 (14,993;	24,106 (14,614;	25,216 (20,68;	0.1=5:	
DifferenceVariance	41,278)	41,278)	41,137)	0,1704	
GLCM Inverse Variance	0,173 (0,14; 0,215)	0,175 (0,14; 0,216)	0,168 (0,149;	0,3387	
GLCIVI HIVEISC V arrance	0,175 (0,17, 0,215)	0,175 (0,14, 0,210)	0,100 (0,147,	0,5507	

			0,186)	
GLRLM LongRunEmphasis	1,195 (1,143; 1,265)	1,2 (1,143; 1,267)	1,19 (1,161; 1,196)	0,1896
GLRLM RunLengthNonUniformi ty	834,554 (550,731; 1171,685)	822,196 (537,553; 1169,01)	894,753 (750,684; 1295,52)	0,2328
GLRLM ShortRunEmphasis	0,96 (0,95; 0,97)	0,959 (0,949; 0,97)	0,962 (0,959; 0,967)	0,183
GLSZM SizeZoneNonUniformit y	531,29 (311,898; 789,14)	519,441 (308,387; 789,14)	592,657 (497,64; 803,318)	0,131
GLSZM SmallAreaEmphasis	0,856 (0,822; 0,889)	0,854 (0,817; 0,889)	0,864 (0,855; 0,878)	0,1766
		ый миокард ЛЖ		
FO Energy	1.81e+9 (1.13e+9; 3.60e+9)	1.81e+9 (1.12e+9; 3.39e0+9)	2.12e+9 (1.25e+9; 4.65e0+9)	0,0705
FO Entropy	5,181 (4,835; 5,662)	5,154 (4,833; 5,668)	5,341 (4,979; 5,608)	0,0385
FO InterquartileRange	315,794 (240,735; 445,135)	314,929 (239,115; 446,375)	343,617 (266,693; 413,509)	0,0737
FO Range	1826,771 (1400,554; 2334,326)	1842,821 (1391,531; 2327,728)	1791,2 (1608,958; 2346,75)	0,0839
FO Variance	74300,353 (44646,424; 140161,887)	74111,251 (44396,972; 142203,057)	76575,605 (55414,574; 116318,219)	0,1033
GLCM ClusterProminence	1.09e+6 (365095,095; 3.66e+6)	1.11e+6 (351559,839; 3.68e0+6)	998478,086 (773828,438; 3.07e0+6)	0,1362
GLCM ClusterShade	10574,101 (3736,414; 23839,516)	10696,58 (3465,558; 24086,21)	9116,306 (6358,822; 17988,465)	0,3
GLCM Contrast	25,166 (15,263; 40,376)	25,391 (15,018; 40,41)	22,313 (17,94; 32,821)	0,2824
GLCM DifferenceAverage	3,524 (2,796; 4,439)	3,524 (2,767; 4,479)	3,513 (3,076; 4,255)	0,1526
GLCM DifferenceEntropy	3,289 (2,985; 3,605)	3,289 (2,968; 3,616)	3,282 (3,123; 3,537)	0,147
GLCM DifferenceVariance	11,223 (7,029; 18,278)	11,278 (6,859; 18,498)	9,944 (7,96; 13,945)	0,47
GLCM InverseVariance	0,277 (0,234; 0,324)	0,277 (0,235; 0,324)	0,267 (0,231; 0,294)	0,049
GLRLM LongRunEmphasis	1,399 (1,308; 1,536)	1,4 (1,308; 1,541)	1,369 (1,278; 1,439)	0,0167
GLRLM RunLengthNonUniformi ty	1591,155 (1233,361; 2041,804)	1595,794 (1249,049; 2102,539)	1369,62 (1230,947; 1703,175)	0,0513
GLRLM ShortRunEmphasis	0,927 (0,909; 0,94)	0,926 (0,909; 0,94)	0,932 (0,922; 0,945)	0,0146
GLSZM SizeZoneNonUniformit y	680,287 (558,762; 1049,68)	722,354 (544,356; 1085,977)	656,91 (596,185; 929,934)	0,971
GLSZM SmallAreaEmphasis	0,764 (0,729; 0,802)	0,763 (0,728; 0,802)	0,779 (0,75; 0,808)	0,023

Примечание: GLCM – grey-level co-occurrence matrix, GLRLM – grey-level run-length matrix, GLSZM – grey-level size zone matrix, FO – first-order, ЛЖ – левый желудочек, ОКУ – отсроченное контрастное усиление.

Корреляционные взаимосвязи показателей неоднородности ткани миокарда с MP-показателями

Функциональные МР-показатели, отражающие преимущественно систолическую функцию ЛЖ, характеризовались наличием слабой и средней силы обратной взаимосвязи с текстурными параметрами, отражающими неоднородность распределения интенсивностей сигнала от ткани миокарда, и прямую средней силы корреляцию с индексами текстурной однородности. При этом было выявлено, что увеличение неоднородности сигнала коррелирует с ИС на Т2-ВИ (рис. 1).

	ММ ЛЖ, г	ФВ ЛЖ, %	УО ЛЖ, мл	СИ ЛЖ, л/мин/ м²	Повышенная ИС Т2-ВИ, мл	Повышенная ИС Т2-ВИ, г	
FO Entropy LV	0,151	-0,503	-0,294	-0,319	0,363	0,349	
FO InterquartileRange	0,151	-0,521	-0,328	-0,365	0,352	0,350	
FO Range	0,104	-0,360	-0,267	-0,300	0,316	0,295	
FO Variance	0,094	-0,433	-0,295	-0,344	0,325	0,310	
GLCM ClusterProminence	0,034	-0,336	-0,282	-0,340	0,273	0,250	
GLCM ClusterShade	0,028	-0,288	-0,248	-0,316	0,251	0,226	
GLCM Contrast	0,087	-0,409	-0,298	-0,291	0,277	0,249	
GLCM InverseVariance	-0,029	0,369	0,334	0,327	-0,276	-0,246	
GLRLM LongRunEmphasis	-0,039	0,380	0,324	0,327	-0,283	-0,252	
GLRLM RunLengthNonUniformity	0,463	-0,345	-0,071	-0,124	0,410	0,385	
GLSZM SmallAreaEmphasis	0,060	-0,433	-0,265	-0,266	0,287	0,256	
	p ≥ 0,05						
	-0,1 < ρ < -0,3, p	-0,1 < ρ < -0,3, p < 0,05					
	-0,3 < ρ < -0,4, p	-0,3 < ρ < -0,4, p < 0,05			0 < 0,05		
	ρ > -0,4, p < 0,05			ρ > 0,4, p < 0,0	ρ > 0,4, p < 0,05		

Рис. 1. Корреляционная матрица показателей неоднородности по всему левому желудочку и MP-показателей

Примечание: FO – first-order, LV – left ventricle, GLCM – grey-level co-оссиrrence matrix, GLRLM – grey-level run-length matrix, GLSZM – grey-level size zone matrix, p – уровень значимости, ρ – коэффициент ранговой корреляции Спирмена, ВИ – взвешенное изображение, ИС – интенсивность сигнала, ЛЖ – левый желудочек, ММ – масса миокарда, СИ – сердечный индекс, УО – ударный объем.

Fig. 1. Correlation matrix of indicators of heterogeneity throughout LV and MR-indicators

Note: FO – first-order, LV – left ventricle, GLCM – grey-level co-occurrence matrix, GLRLM – grey-level run-length matrix, GLSZM – grey-level size zone matrix, p – significance level, ρ – Spearman's rank correlation coefficient, WI – weighted image, SI – signal intensity, MM – myocardial mass, CI – cardiac index, SV – stroke volume.

Изолированный анализ зон повреждения и интактного миокарда ЛЖ показал, что однородность поврежденных участков на изображениях с ОКУ обратно пропорциональна снижению систолических МР-показателей ЛЖ и имеет прямую зависимость с повышением ИС на Т2-ВИ. С другой стороны, неоднородности распределения ИС в интактном миокарде имеют слабую отрицательную взаимосвязь с показателями функции ЛЖ. При этом увеличение однородности интактного миокарда положительно коррелирует с увеличением ФВ ЛЖ, УО ЛЖ и СИ ЛЖ (рис. 2).

	ФВЛЖ,%	УО ЛЖ, мл	СИ ЛЖ, л/мин/ м²	Повышенная ИС Т2-ВИ, мл	Повышенная ИС Т2-ВИ, г
FO Energy Scar LV	-0,436	-0,245	-0,316	0,288	0,290
FO Entropy intact LV	-0,254	-0,236	-0,259	0,169	0,141
GLCM InverseVariance intact LV	0,281	0,288	0,283	-0,163	-0,128
GLRLM LongRunEmphasis intact LV	0,299	0,278	0,277	-0,173	-0,135
GLRLM ShortRunEmphasis intact LV	-0,286	-0,283	-0,278	0,159	0,126
GLSZM SmallAreaEmphasis intact LV	-0,282	-0,265	-0,260	0,170	0,129

Рис. 2. Корреляционная матрица показателей неоднородности повреждения миокарда (scar LV), интактного миокарда левого желудочка (intact LV) и МР-показателей

Примечание: FO – first-order, LV – left ventricle, GLCM – grey -level co-оссиrrence matrix, GLRLM – grey -level run-length matrix, GLSZM – grey -level size zone matrix, p – уровень значимости, ρ - коэффициент ранговой корреляции Спирмена, ВИ – взвешенное изображение, ИС – интенсивность сигнала, ЛЖ – левый желудочек, ММ – масса миокарда, СИ – сердечный индекс, УО – ударный объем.

Fig. 2. Correlation matrix of indicators of heterogeneity of myocardial injury (scar LV), intact LV myocardium (intact LV) and MR-indicators

Note: FO – first-order, LV – left ventricle, GLCM – grey-level co-occurrence matrix, GLRLM – grey-level run-length matrix, GLSZM – grey-level size zone matrix, p – significance level, ρ – Spearman's rank correlation coefficient, WI – weighted image, SI – signal intensity, MM – myocardial mass, CI – cardiac index, SV – stroke volume.

Обсуждение

Выявление новых прогностических факторов НССС представляет собой текущий приоритет в кардиологических исследованиях. У пациентов, перенесших ИМ, высок риск внезапной сердечной смерти в результате высокой долгосрочной частоты фатальных НССС [5]. Процессы ремоделирования миокарда, происходящие после ИМ, играют ключевую роль в прогнозе дальнейшего развития ишемической болезни сердца (ИБС) у пациентов. Проведенное исследование находится в числе первых работ, основной фокус которых сосредоточен на выявлении текстурных изменений тканевых характеристик миокардиальной ткани, выявляемых с помощью МРТ, у пациентов после первичного ИМ.

К основному результату выполненной работы ОНЖОМ отнести достоверные различия тканевых характеристик миокарда ЛЖ у пациентов с НССС в трехлетний период наблюдения по сравнению с группой сравнения. При этом важной и нелогичной, на первый взгляд, находкой стало наличие отличий не только в текстурных показателях области повреждения миокарда, а преимущественно в интактной миокардиальной ткани. Обобщая выявленные в этом исследовании изменения текстурных показателей ткани миокарда ЛЖ, можно сделать вывод о том, что пациенты с наличием НССС в трехлетнем периоде наблюдения характеризовались более однородной зоной повреждения миокарда и выраженной неоднородностью интактной миокардиальной ткани ЛЖ. Это во многом соответствует результатам работы группы авторов под руководством A.F.A. Androulakis и соавт. [6], которая была посвящена анализу тканевых изменений миокарда ЛЖ в аспекте развития жизнеугрожающих аритмий. Полученные результаты не противоречат ряду других исследований в данной области [7–9].

Клиническая характеристика пациентов и данные биохимического анализа крови являются на сегодняшний день одними из ключевых в стратификации тяжести течения ОИМ и последующем прогнозе ИБС. Риск по шкале GRACE считается одним из предикторов неблагоприятного течения

ОИМ, однако шкала GRACE более подходит для прогнозирования внутрибольничной смертности [10] и может быть не информативна на более поздних этапах, что подтверждается результатами данной работы и ряда смежных исследований [11–13].

Такие сывороточные биохимические маркеры повреждения, как креатинфосфокиназа-МВ и Тропонин I преимущественно отражают степень выраженности повреждения миокарда. Хотя есть ряд работ, демонстрирующих прогностические возможности этих показателей [12], в данном исследовании их роль неоднозначна.

Неинформативными в прогностическом аспекте оказались и показатели отсроченного контрастирования, напрямую связанные с оценкой тканевых характеристик миокарда ЛЖ. Несмотря на то, что параметры ОКУ являются наиболее надежным и проверенным инструментом, отражающим состояние миокардиальной стенки сердца, в настоящее время на первый план выходят подходы – Т1- и Т2-картирование, текстурный анализ и т. п., позволяющие выявить изменения на более низком (клеточном и молекулярном) уровне. При такие показатели, контрастирования ЭТОМ как размер наличие микроваскулярной обструкции отражают достаточно «грубые» тканевые изменения и не информативны в аспекте прогноза.

 \mathbf{C} ЛЖ ПЖ стороны, показатели функции другой являются общепризнанными предикторами неблагоприятного прогностическими течения ОИМ, ИБС и большого ряда других заболеваний. В первую очередь данные параметры отражают системные / глобальные нарушения, происходящие в сердечной мышце. Снижение ФВ и УО, выявленное в группе «+HCCC», при условии отсутствия достоверных различий повреждения может свидетельствовать о наличии патологических изменений, выходящих за пределы инфарцированной области и имеющих системный характер. Одним из таких патологических процессов является воспаление.

Роль воспалительного ответа в патогенезе ИМ хорошо установлена, в основном сфокусирована на локальной реакции в месте повреждения [5, 14,

15]. Активация рецепторов к консервативным молекулярным структурам — будь то ассоциированные с повреждением клетки (DAMPs) или с патогенассоциированными молекулярными паттерны (PAMPs) — в конечном итоге запускает продукцию воспалительных цитокинов, различных хемокинов среди других медиаторов [16]. Цитокины действуют синергично, инициируя воспалительный ответ, индуцируя экспрессию рецепторов цитокинов и других провоспалительных молекул и катализируя каскад амплификации [17].

Суррогатом системного воспалительного процесса, затрагивающего весь миокард ЛЖ, может являться высокая неоднородность неинфарцированной (интактной) миокардиальной ткани сердца, что подтверждается результатами проведенного исследования.

Ограничения исследование

Небольшой объем выборки и несбалансированность групп по количеству пациентов являются наиболее важными ограничениями данной работы. Однако, несмотря на это, мы смогли получить статистически значимые различия между группами.

Заключение

Показатели гетерогенности, оцененные с помощью МРТ, отражают изменения, происходящие в миокарде ЛЖ после ОИМ, связаны с функциональными показателями сердца и могут рассматриваться в качестве прогностических факторов неблагоприятного течения. Учитывая ограничения данного исследования, необходимы дальнейшие исследования для изучения связи между МРТ ЛЖ, гетерогенностью ткани миокарда и неблагоприятными событиями после ИМ.

Литература / References

1. Аверков О.В., Арутюнян Г.К., Дупляков Д.В., Константинова Е.В., Никулина Н.Н., Шахнович Р.М. и др. Острый инфаркт миокарда с подъемом

- сегмента ST электрокардиограммы. Клинические рекомендации 2024. *Российский кардиологический журнал.* 2025;30(3):6306. https://doi.org/10.15829/1560-4071-2025-6306.
- Averkov O.V., Harutyunyan G.K., Duplyakov D.V., Konstantinova E.V., Konstantinova N.N., Shakhnovich R.M. et al. 2024 Clinical practice guidelines for Acute myocardial infarction with ST segment elevation electrocardiogram. *Russian Journal of Cardiology*. 2025;30(3):6306. (In Russ.). https://doi.org/10.15829/1560-4071-2025-6306
- 2. Jernberg T., Hasvold P., Henriksson M., Hjelm H., Thuresson M., Janzon M. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. *Eur. Heart J.* 2015;36(19):1163–1170. https://doi.org/10.1093/eurheartj/ehu505
- 3. Androulakis A.F.A., Zeppenfeld K., Paiman E.H.M., Piers S.R.D., Wijnmaalen A.P., Siebelink H.J. et al. Entropy as a Novel measure of myocardial tissue heterogeneity for prediction of ventricular arrhythmias and mortality in Post-infarct patients. *JACC Clin. Electrophysiol.* 2019;5(4):480–489. https://doi.org/10.1016/j.jacep.2018.12.005
- 4. Zegard A., Okafor O., de Bono J., Kalla M., Lencioni M., Marshall H. et al. Greyzone myocardial fibrosis and ventricular arrhythmias in patients with a left ventricular ejection fraction > 35. *Europace*. 2022;24(1):31–39. https://doi.org/10.1093/europace/euab167
- Kologrivova I., Kercheva M., Panteleev O., Ryabov V. The role of inflammation in the pathogenesis of cardiogenic shock secondary to acute myocardial infarction: a narrative review. *Biomedicines*. 2024;12(9):2073. https://doi.org/10.3390/biomedicines12092073
- 6. Androulakis A.F.A., Zeppenfeld K., Paiman E.H.M., Piers S.R.D., Wijnmaalen A.P., Siebelink H.J. et al. Entropy as a novel measure of myocardial tissue heterogeneity for prediction of ventricular arrhythmias and mortality in post-infarct patients. *JACC Clin. Electrophysiol.* 2019;5(4):480–489. https://doi.org/10.1016/j.jacep.2018.12.005

- 7. Kotu L.P., Engan K., Skretting K., Måløy F., Orn S., Woie L., Eftestøl T. Probability mapping of scarred myocardium using texture and intensity features in CMR images. *Biomed. Eng. Online.* 2013;12:91. https://doi.org/10.1186/1475-925X-12-91
- 8. Zhao X., Zhang L., Wang L., Zhang W., Song Y., Zhao X. et al. Magnetic resonance imaging quantification of left ventricular mechanical dispersion and scar heterogeneity optimize risk stratification after myocardial infarction. *BMC Cardiovasc. Disord.* 2025;25(1):2. https://doi.org/10.1186/s12872-024-04451-4
- 9. Roifman I., Ghugre N.R., Vira T., Zia M.I., Zavodni A., Pop M., Connelly K.A., Wright G.A. Assessment of the longitudinal changes in infarct heterogeneity post myocardial infarction. *BMC Cardiovasc. Disord.* 2016;16(1):198. https://doi.org/10.1186/s12872-016-0373-5
- 10. Kawamura Y., Yoshimachi F., Murotani N., Karasawa Y., Nagamatsu H., Kasai S. et al. Comparison of mortality prediction by the GRACE score, multiple biomarkers, and their combination in all-comer patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. *Intern. Med.* 2023;62(4):503–510. https://doi.org/10.2169/internalmedicine.9486-22
- 11.Bulluck H., Carberry J., Carrick D., McCartney P.J., Maznyczka A.M., Greenwood J.P. et al. A Noncontrast CMR risk score for long-term risk stratification in reperfused ST-segment elevation myocardial infarction. *JACC Cardiovasc. Imaging.*2022;15(3):431–440.

 https://doi.org/10.1016/j.jcmg.2021.08.006
- 12.Mohammad M.A., Koul S., Lønborg J.T., Nepper-Christensen L., Høfsten D.E., Ahtarovski K.A. et al. Usefulness of high sensitivity troponin t to predict long-term left ventricular dysfunction after ST-elevation myocardial infarction. *Am. J. Cardiol.* 2020; 134:8–13. https://doi.org/10.1016/j.amjcard.2020.07.060
- 13. Kabiri A., Gharin P., Forouzannia S.A., Ahmadzadeh K., Miri R., Yousefifard M. HEART versus GRACE Score in predicting the outcomes of patients with acute coronary syndrome; a systematic review and meta-analysis. *Arch. Acad. Emerg. Med.* 2023;11(1): e50. https://doi.org/10.22037/aaem.v11i1.2001

- 14.Frangogiannis N.G., Smith C.W., Entman M.L. The inflammatory response in myocardial infarction. *Cardiovasc. Res.* 2002;53(1):31–47. https://doi.org/10.1016/s0008-6363(01)00434-5
- 15.Рябов В.В., Попов С.В., Вышлов Е.В., Сиротина М., Нарыжная Н.В., Мухомедзянов А.В., и др. Реперфузионное повреждение сердца. Роль микроваскулярной обструкции. *Сибирский журнал клинической и экспериментальной медицины.* 2023;38(2):14–22. https://doi.org/10.29001/2073-8552-2023-39-2-14-22

Ryabov V.V., Popov S.V., Vyshlov E.V., Sirotina M., Naryzhnaya N.V., Mukhomedzyanov A.V. et al. Reperfusion cardiac injury. The role of microvascular obstruction. *Siberian Journal of Clinical and Experimental Medicine*. 2023;38(2):14–22. (In Russ.) https://doi.org/10.29001/2073-8552-2023-39-2-14-22

- 16. Takahashi M. Role of the inflammasome in myocardial infarction. *Trends Cardiovasc. Med.* 2011;21(2):37–41. https://doi.org/10.1016/j.tcm.2012.02.002
- 17. Vila E., Salaices M. Cytokines and vascular reactivity in resistance arteries. *Am. J. Physiol. Heart Circ. Physiol.* 2005;288(3):H1016–H1021. https://doi.org/10.1152/ajpheart.00779.2004

Информация о вкладе авторов

Мочула О.В. – разработка концепции исследования, проведение, обработка и анализ МРТ-исследований создание и работа с базой данных, статистическая обработка результатов, интерпретация полученных результатов, подготовка рукописи; Мальцева А.Н. – обработка и извлечение текстурных заполнение базы данных, оформление сопроводительных характеристик, Мочула А.В. разработка документов; концепции исследования, статистическая обработка результатов, интерпретация полученных результатов, подготовка рукописи; Василевич К.В. – обработка и извлечение текстурных базы данных; Воронина О.С. – работа с характеристик, заполнение медицинской информационной системой, заполнение базы данных; Диль С.В. – заполнение медицинской информационной системы, курация больных; Рябов В.В. — согласование и доработка исходного варианта рукописи; Завадовский К.В. — согласование и доработка исходного варианта рукописи.

Все авторы дали окончательное согласие на подачу рукописи, согласились нести ответственность за все аспекты работы, ручаясь за их точность и безупречность.

Information on author contributions

Mochula O.V. – conceptualization, conducting cardiac MRI studies, data curation, formal analysis, interpretation of results, and manuscript preparation; Maltseva A.N. – data curation, extraction of texture features, and documentation; Mochula A.V. – conceptualization, formal analysis, interpretation of results, and manuscript preparation; Vasilevich K.V. – extraction of texture features and data curation; Voronina O.S. – data collection from the medical information system and data curation; Dil S.V. – patient management and data entry into the medical information system; Ryabov V.V. – manuscript review and editing. Zavadovsky K.V. – manuscript review and editing.

All authors gave final consent to the submission of the manuscript, agreed to be responsible for all aspects of the work, vouching for their accuracy and flawlessness.

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов.

Conflict of interest: the authors do not declare a conflict of interest.

Сведения об авторах:

Мочула Ольга Витальевна, канд. мед. наук, научный сотрудник, отделение рентгеновских и томографических методов диагностики, НИИ кардиологии Томского НИМЦ, Томск, Россия, e-mail: mochula.olga@gmail.com; https://orcid.org/0000-0002-7502-7502.

Мальцева Алина Николаевна, канд. мед. наук, научный сотрудник, отделение рентгеновских и томографических методов диагностики, НИИ кардиологии Томского НИМЦ, Томск, Россия, e-mail: maltseva.alina.93@gmail.com; https://orcid.org/0000-0002-1311-0378.

Мочула Андрей Викторович, канд. мед. наук, старший научный сотрудник, лаборатория радионуклидных методов исследования, НИИ кардиологии Томского НИМЦ, Томск, Россия, e-mail: mochula.andrew@gmail.com; https://orcid.org/0000-0003-0883-466X.

Василевич Карина Васильевна, лаборант-исследователь, отделение рентгеновских и томографических методов диагностики, НИИ кардиологии Томского НИМЦ, Томск, Россия, e-mail: karinavas0225@gmail.com; https://orcid.org/0009-0004-3766-6786.

Воронина Ольга Станиславовна, студент лечебного факультета СибГМУ Минздрава России, Томск, Россия, e-mail: olyavoronina894@gmail.com; https://orcid.org/0009-0000-2909-3552.

Диль Станислав Викторович, младший научный сотрудник, лаборатория инфаркт миокарда-ассоциированного шока; врач-кардиолог группы реанимации и интенсивной терапии, НИИ кардиологии Томского НИМЦ, Томск, Россия, e-mail: dil.stanislav@mail.ru; https://orcid.org/0000-0003-3692-5892.

Рябов Вячеслав Валерьевич, д-р мед. наук, профессор, чл.-корр. РАН, зам. директора по научной и лечебной работе, заведующий отделением неотложной кардиологии, НИИ кардиологии Томского НИМЦ, Томск, Россия, e-mail: rvvt@cardio-tomsk.ru; https://orcid.org/0000-0002-4358-7329.

Завадовский Константин Валерьевич, д-р мед. наук, заведующий отделом лучевой диагностики, НИИ кардиологии Томского НИМЦ, Томск, Россия, e-mail: Konstz@cardio-tomsk.ru; https://orcid.org/0000-0002-1513-8614.

Information about the authors

Olga V. Mochula, Cand. Sci. (Med.), Research Scientist, Department of Radiology and Tomography, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia, e-mail: mochula.olga@gmail.com; https://orcid.org/0000-0002-7502-7502.

Alina N. Maltseva, Cand. Sci. (Med.), Research Scientist, Department of Radiology and Tomography, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia, e-mail: maltseva.alina.93@gmail.com; https://orcid.org/0000-0002-1311-0378.

Andrew V. Mochula, Cand. Sci. (Med.), Senior Research Scientist, Department of Nuclear Medicine, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia, e-mail: mochula.andrew@gmail.com; https://orcid.org/0000-0003-0883-466X.

Karina V. Vasilevich, Laboratory Research Assistant, Department of Radiology and Tomography, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia, e-mail: karinavas0225@gmail.com; https://orcid.org/0009-0004-3766-6786.

Olga V. Voronina, Student, Medical Faculty, SSMU, Tomsk, Russia, e-mail: olyavoronina894@gmail.com; https://orcid.org/0009-0000-2909-3552.

Stanislav V. Dil, Research Scientist, Laboratory of infarction-associated shock, Cardiologist, Resuscitation and Intensive Care Unit, Cardiology Research

Institute, Tomsk NRMC, Tomsk, Russia, e-mail: dil.stanislav@mail.ru. https://orcid.org/0000-0003-3692-5892.

Vyacheslav V. Ryabov, Dr. Sci. (Med.), Professor, Corresponding Member, Russian Academy of Siences, Deputy Director for Scientific and Medical Work, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia; Head of the Department of Cardiology, SSMU, Tomsk, Russia, e-mail: rvvt@cardio-tomsk.ru; http://orcid.org/0000-0002-4358-7329.

Konstantin V. Zavadovsky, Dr. Sci. (Med.), Head of the Department of Radiation Diagnostics, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia, e-mail: Konstz@cardio-tomsk.ru; https://orcid.org/0000-0002-1513-8614.

Поступила 28.10.2025; рецензия получена 11.11.2025; принята к публикации 12.11.2025. Received 28.10.2025; review received 11.11.2025;

accepted for publication 12.11.2025.