

https://doi.org/10.29001/2073-8552-2019-34-1-124-129 УДК 616.36-006.327-036-07

ТРОМБОЦИТЫ, АСПАРТАТАМИНОТРАНСФЕРАЗА, ФАКТОР НЕКРОЗА ОПУХОЛИ- α — ЛАБОРАТОРНАЯ ПАНЕЛЬ ДИАГНОСТИКИ СТАДИИ ФИБРОЗА ПЕЧЕНИ

А.П. Щекотова, И.А. Булатова*, Д.Ю. Соснин, Ю.И. Третьякова

Пермский государственный медицинский университет имени академика Е.А. Вагнера Министерства здравоохранения Российской Федерации, 614000, Российская Федерация, Пермь, ул. Петропавловская, 26

Цель: оценить возможности количества тромбоцитов, активности аспартатаминотрансферазы (АСТ) и концентрации фактора некроза опухоли- α (ФНО- α) для оценки выраженности фиброза печени при хроническом гепатите С (ХГС), разработать формулу подсчета индекса фиброза (ИФ).

Материал и методы. В исследование были включены 70 пациентов с ХГС и 30 практически здоровых лиц. Плотность печени определяли методом ультразвуковой эластографии (УЗЭ).

Результаты. При проведении корреляционного анализа выявлены сильные взаимосвязи между стадией фиброза по данным УЗЭ и количеством тромбоцитов (r=0,83), АСТ (r=0,83) и ФНО- α (r=0,81). Выявлены оптимальные точки разделения лабораторных тестов для исключения фиброза: количество тромбоцитов более 270×10 9 /л (чувствительность теста 96,2%), активность АСТ менее 44 Е/л (чувствительность 96,2%), концентрация ФНО- α ниже 1,9 пг/мл (чувствительность 92,3%). Полученные значения лабораторных показателей использовали для расчета ИФ печени. Значение ИФ в интервале от 0 до 0,5 свидетельствует об отсутствии фиброза (стадия F0), значение ИФ в интервале от 0,6 до 2,5 соответствует умеренной стадии фиброза (F1-2), значение ИФ более 2,5 соответствует выраженному фиброзу/циррозу печени (F3-4) с диагностической чувствительностью 83% и специфичностью 78%.

Заключение. Количество тромбоцитов, активность АСТ, концентрация ФНО-α и ИФ с включением данных лабораторных тестов могут использоваться для исключения фиброза у пациентов с ХГС и стратификации стадий фиброза печени (ФП).

Ключевые слова: хронический гепатит С, фиброз печени, тромбоциты, аспартатаминотрансфераза, фактор некроза

опухоли-α, индекс фиброза

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов

Прозрачность финан-**совой деятельности:**никто из авторов не имеет финансовой заинтересованности в представленных материалах или методах

Щекотова А.П., Булатова И.А., Соснин Д.Ю., Третьякова Ю.И. Тромбоциты, аспартатаминотрансфераза, фак-

Для цитирования: тор некроза опухоли- α — лабораторная панель диагностики стадии фиброза печени. Сибирский медицин-

ский журнал. 2019;34(1):124–129. https://doi.org/10.29001/2073-8552-2019-34-1-124-129

PLATELETS, ASPARTATE AMINOTRANSFERASE, TUMOR NECROSIS FACTOR- α : LABORATORY PANEL FOR DIAGNOSIS OF LIVER FIBROSIS STAGE

Alevtina P. Shchekotova, Irina A. Bulatova*, Dmitry Yu. Sosnin, Yulia I. Tretyakova

Perm State Medical University named after Academician E. A. Wagner, 26, Petropavlovskaya str., Perm, 614000, Russian Federation

Aim. To study significance of platelet count and values of aspartate aminotransferase and tumor necrosis factor- α in the evaluation of the severity of liver fibrosis in chronic hepatitis C and for the development of fibrosis index calculation formula.

Material and Methods. The study included 70 patients with chronic hepatitis C end 30 healthy persons. Liver density was estimated by ultrasound elastography.

Results. The correlation analysis revealed strong relationships between the ultrasound elastography findings of fibrosis stage and the platelet count (r=0.83), aspartate aminotransferase (r=0.83), and tumor necrosis factor- α (r=0.81). The optimal separa-

tion points of laboratory tests for fibrosis exclusion were identified as follows: platelet count> 270×10^9 /L (test sensitivity=96.2%), aspartate aminotransferase level<44 E/L (sensitivity=96.2%), and tumor necrosis factor- α concentration below 1.9 pg/mL (sensitivity=92.3%). The obtained values of laboratory parameters were used for calculation of the liver fibrosis index. The value of the fibrosis index ranging between 0 and 0.5 indicated the absence of fibrosis (stage F0), the value of the fibrosis index ranging between 0.6 and 2.5 corresponded to the moderate stage of fibrosis (F1-2), and the value of the fibrosis index>2.5 corresponded to the severe fibrosis/cirrhosis of the liver (F3-4) with diagnostic sensitivity of 83% and specificity of 78%.

Conclusion. Platelet count, the values of aspartate aminotransferase and tumor necrosis factor- α levels, fibrosis index, and laboratory test data can be used for ruling out fibrosis in chronic hepatitis C patients as well as for stratification of liver fibrosis stages.

Keywords: chronic hepatitis C, liver fibrosis, platelets, aspartate aminotransferase, tumor necrosis factor-α, fibrosis index

Conflict of interest: the authors do not declare a conflict of interest

Financial disclosure: no author has a financial or property interest in any material or method mentioned

Shchekotova A.P., Bulatova I.A., Sosnin, D.Yu., Tretyakova Y.I. Platelets, Aspartate Aminotransferase, Tumor Necrosis

For citation: Factor-α: Laboratory Panel for Diagnosis of Liver Fibrosis Stage. The Siberian Medical Journal. 2019;34(1):124–

129. https://doi.org/10.29001/2073-8552-2019-34-1-124-129

Введение

Хронические заболевания печени входят в число основных причин смертности населения. В последние годы отмечается тенденция к росту заболеваемости и смертности среди лиц трудоспособного возраста. В патогенезе хронических заболеваний печени, несмотря на различные этиологические факторы, центральное место занимает развитие фиброза, который в конечном итоге приводит к циррозу печени [1]. В прошлом цирроз печени считался необратимым состоянием, однако в последнее время происходит изменение взгляда на проблему. Появились экспериментальные и клинические доказательства возможной обратимости фиброза печени (ФП) как на стадии гепатита, так и цирроза [2]. Стратификация выраженности ФП имеет значение для определения тактики лечения больного и прогноза, особенно при выраженном фиброзе [1].

«Золотым стандартом» диагностики ФП остается пункционная биопсия печени, но введение неинвазивных тестов в алгоритм обследования пациентов с диффузными поражениями печени позволяет уменьшить необходимость биопсии почти на 50% [3]. Как альтернатива пункционной биопсии печени предложен метод ультразвуковой эластометрии с помощью аппарата FibroScan (Франция). Метод позволяет судить о плотности органа, которая возрастает пропорционально накоплению соединительной ткани, но при этом имеет ряд технических ограничений: асцит, ожирение, узкие межреберные промежутки у пациента. Результат исследования зависит от модификации прибора/датчика и даже от опыта специалиста [4].

Среди неинвазивных методов лабораторной диагностики выраженности ФП традиционно применяются стандартные «печеночные» пробы, в том числе билирубин, холестерин, общий белок, альбумин, активность трансаминаз, протромбиновый индекс и другие. Эти тесты позволяют выявить функциональные нарушения печени, но не являются специфическими маркерами фиброза/цирроза [5]. Прямые сывороточные маркеры фиброза — гиалуроновая кислота, коллагеназы, матриксные металлопроТеіназы, тканевые ингибиторы металлопроТеіназ и др. имеют высокую эффективность для диагностики фиброза/цирроза печени [6]. Тем не менее применение прямых маркеров ФП не нашло широкого использования для диагностики, во-первых, из-за высокой стоимости, во-вторых, по причине относительной специфичности тестов, которые могут быть изменены не только при развитии грубой соединительной ткани в печени [5].

В результате многолетних исследований, проведенных профессором Т. Роупагd и сотрудниками в 2004 г., установлена связь между сывороточными уровнями биомаркеров дисфункции печени и стадиями фиброза — FibroTest. В эту общепризнанную панель тестов для диагностики ФП входят, помимо антропометрических данных, непрямые биохимические маркеры фиброза. Стадия фиброза в данной панели определяется по запатентованной формуле с привязкой к шкале METAVIR, тем не менее метод имеет ряд ограничений [8]. В Российской Федерации имеется ряд лабораторий, лицензированных для определения этого теста, но высокая стоимость ограничивает его использование, поэтому продолжаются поиски простых и более дешевых тестов для диагностики патологии печени в целом и фиброза в частности.

Цель нашего исследования: оценка диагностических возможностей лабораторных показателей — количества тромбоцитов, активности аспартатаминотрансферазы (АСТ) и концентрации фактора некроза опухоли-альфа (ФНО- α) в крови в качестве непрямых тестов оценки выраженности фиброза печени при хроническом гепатите С (ХГС), разработка формулы подсчета индекса фиброза (ИФ) и определение его операционных характеристик.

Материал и методы

На базе Пермского краевого гепатологического центра обследовано 70 пациентов (30 мужчин и 40 женщин) с ХГС, средний возраст составил 36,0±6,7 года. Сопоставимая по полу и возрасту группа контроля состояла из 30 практически здоровых человек. Ультразвуковую эластографию (УЗЭ) печени проводили на аппарате FibroScan (EchoSens, Франция), единицы плотности печени приведены к шкале METAVIR.

У пациентов в цельной крови, забранной с антикоагулянтом ЭДТА, определяли количество тромбоцитов на автоматическом гематологическом анализаторе Medonic M20 (Boule Medical AB, Швеция). На автоматическом биохимическом анализаторе Architect c4000 (Abbott Laboratories, США) исследовали активность ACT в сыворотке крови кинетическим методом с использованием набора AST (Abbott Clinical Chemistry, США). В сыворотке крови методом иммуноферментного анализа на аппарате Stat Fax 2100 (Awareness Technology, США) определяли концентрацию Φ HO- α с использованием набора «альфа- Φ HO- Ω PA-БЕСТ» (ЗАО «Вектор-Бест», Новосибирск).

Статистическую обработку результатов проводили с использованием программы Statistica 6.1 (© StatSoft, Inc. 1984-2004) и встроенного пакета анализа табличного процессора Excel® 2013 MSO (© Microsoft, 2013). Исходные данные оценивались на соответствие нормальному распределению по критерию Колмогорова — Смирнова. Зависимости анализировали с помощью коэффициентов ранговой корреляции Спирмена. Для оценки значимости различий при нормальном распределении использовался двухвыборочный t-критерий (для средних), в иных случаях — критерий U Манна — Уитни (для медиан). Для множественных сравнений (число групп более 2) применялся критерий h Краскела — Уоллиса. Различия считались статистически значимыми при p<0,05. С помощью программы MedCalc® 15.8 Portable (© MedCalc Software, 1993-2014) проводили расчет коэффициентов множественной регрессии, для расчета пороговых значений и диагностической эффективности показателей использовался ROC-анализ.

Результаты

По данным УЗЭ больные ХГС были разделены на 3 группы: в 1-ю группу вошли 27 пациентов, у которых ФП не выявлен (F0), во 2-ю группу включены 30 больных с умеренным фиброзом (F1–2), у пациентов 3-й группы (11 человек) диагностирован тяжелый фиброз с переходом в цирроз печени (F3–4). Данная стратификация с объединением стадий ФП по шкале МЕТАVIR с практических позиций позволяет выявлять более значимые различия степени выраженности развития соединительной ткани в печени и таким образом повышать эффективность лабораторной диагностической панели.

Количество тромбоцитов в цельной крови у пациентов без ФП и больных с умеренным ФП формально было в пределах референтных показателей для гематологического анализатора, но между группами выявлено статистически значимое отличие (табл. 1). В 3-й группе (F3—4) практически все обследованные имели тромбоцитопению.

Активность АСТ у большинства пациентов 1-й группы была в пределах «нормы», а при умеренном ФП более половины больных имели повышение активности АСТ, различия между группами были статистически значимыми. При ФП 3–4-й стадии показатель АСТ у всех обследованных был повышен, значимые отличия выявлены между пациентами 2 и 3-й групп (см. табл. 1).

Исследование ФНО- α выявило повышение концентрации этого цитокина практически у всех пациентов, в меньшей степени при F0, в среднем в 2 раза во 2-й группе по сравнению с 1-й, а при выраженном ФП (F3-4) по сравнению с умеренным фиброзом — в 7,6 раза. Различия между группами были статистически значимыми (см. табл. 1).

Выявлены сильные взаимосвязи между плотностью печени по данным эластографии и количеством тромбоцитов (r=0,83; p<0,001), ACT (r=0,83; p<0,001) и ФНО- α (r=0,81; p<0,001).

Для изучаемых показателей были построены ROC-кривые, которые отображают графическую зависимость количества правильно верифицированных истинно положительных результатов от количества отрицательных и позволяют оценить эффективность тестов. Определение чувствительности и специфичности используемых непрямых тестов ФП зависит от выбранных оптимальных пороговых значений лабораторных тестов [7]. Были определены оптимальные пороговые значения количества тромбоцитов, АСТ, ФНО для дифференциации FO (отсутствие фиброза) и наличия фиброза (рис. 1—3).

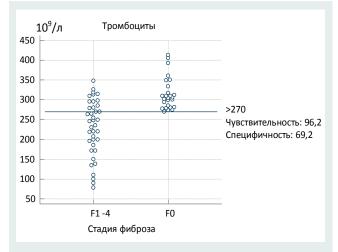


Рис. 1. Точка разделения $270 \times 10^9 / л$ для дифференциации F0 и F1–4

Fig. 1. Cutoff point of 270×10⁹/L for differentiation of F0 и F1-4

Таблица 1. Сравнительный анализ количества тромбоцитов, активности АСТ и концентрации Φ HO- α у больных хроническим вирусным гепатитом С

Table 1. Comparative analysis of platelet count, aspartate aminotransferase, and tumor necrosis factor- α in patients with chronic hepatitis C virus infection

•••	Группы	Стадия фиброза (F) по шкале	Показатели, Ме (25–75 перцентилей)		
Nº	обследованных	METAVIR по данным УЗЭ	тромбоциты, ·10°/л	ACT, E/л	ФНО-α, пг/мл
1	Больные ХГС (<i>n</i> =27)	F0	304,0 (281–334)	31,0 (25–34)	0,9 (0,3–1,6)
2	Больные XГС (<i>n</i> =30)	F1-2	264,5 (230–296)	39,5 (35–51)	1,9 (1,2–2,8)
3	Больные XГС (<i>n</i> =11)	F3-4	134,8 (88–149)	131,0 (88–149)	14,5 (9,8–21)
Крит	терий Манна — Уитни (1 и	2-я группы)	<i>U</i> =161 <i>p</i> <0,001	<i>U</i> =302 <i>p</i> =0,09	<i>U</i> =189 <i>p</i> =0,0005
Крит	терий Манна — Уитни (2 и 3	3-я группы)	U=4 p<0,0001	<i>U</i> =0 <i>p</i> <0,0001	<i>U</i> =0 p<0,0001
Крит	терий Краскела — Уоллиса		<i>CU</i> =7,5 <i>p</i> <0,00001	<i>CU</i> =29,2 <i>p</i> <0,000001	<i>CU</i> =35,6 <i>p</i> <0,000001

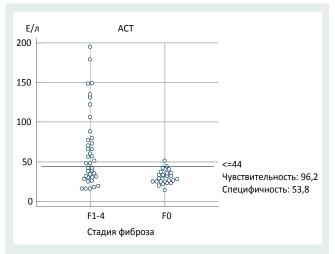


Рис. 2. Точка разделения 44 E/π для дифференциации F0 и F1-4

Fig. 2. Cutoff point of 44 U/L for differentiation of F0 и F1-4

В таблице 2 представлены статистически оптимальные точки разделения: при количестве тромбоцитов более $270\times10^9/\Lambda$ с чувствительностью 96,2% можно предположить отсутствие фиброза. Активность АСТ менее $44\,\mathrm{E}/\Lambda$ предполагает отсутствие фиброза с чувствительностью 96,2%. Концентрация Φ HO- Φ 0 ниже 1,9 пг/мл указывает на отсутствие фиброза с чувствительностью 92,3%.

При этом специфичность 100% для исключения фиброза (F1–4 стадии) по количеству тромбоцитов составляет ≥413×10 9 /л, активность АСТ — ≤14 Е/л, концентрация ФНО- α — ≤0,1 пг/мл. В отношении уровня тромбоцитов необходимо учитывать возможность тромбоцитоза различной причины у больных ХГС (полиморбидность).

Полученные значения лабораторных показателей у больных ХГС использовали для расчета ИФ печени ТАФ (тромбоциты, АСТ, ФНО- α) с помощью уравнения множественной регрессии:

 $M\Phi$ -TA Φ =1,52-0,0047×TP+0,0091×ACT+0,0429× Φ HO- α ,

где ИФ — индекс фиброза, 1,52 — константа, -0,0047, 0,0091 и 0,0429 — числовые коэффициенты показателей, TP — тромбоциты (10^9 /л), ACT — аспартатаминотрансфераза сыворотки крови (Е/л), ФНО- α — фактор некроза опухоли альфа сыворотки крови (π /мл). В качестве зависимой переменной был исполь-

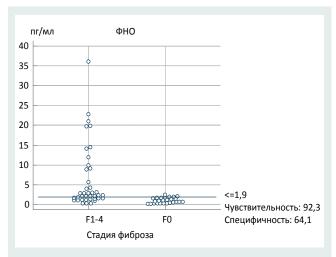


Рис. 3. Точка разделения 1,9 пг/мл для дифференциации F0 и F1–4

Рис. 3. Cutoff point of 1.9 pg/mL for differentiation of F0 и F1-4

зован показатель плотности печени по данным эластографии печени. Значение ИФ в интервале от 0 до 0,5 свидетельствует об отсутствии фиброза (стадия F0), значение ИФ в интервале от 0,6 до 2,5 соответствует умеренной стадии фиброза (F1–2), значение ИФ более 2,5 соответствует выраженной стадии фиброза (F3–4). Данная модель является эффективной и статистически значимой — множественный R=0,91; R²=0,83; F=33,6; p<0,001. Значимость коэффициентов регрессии: Y-пересечение (t=4,08; p=0,0001), TP (t=-4,18; p<0,0001), ACT (t=4,56; t<0,0001), ФНО-t0 (t=3,48; t=0,0009). Остатки регрессии распределены нормально (t2=14,4; DF=11; t=0,211).

В комплексной модели ИФ-ТАФ использованы статистически оптимальные точки стратификации стадий ФП. При этом диагностическая чувствительность предлагаемого способа определения стадии ФП у пациентов с ХГС составила 83%, диагностическая специфичность — 78%, при показателе воспроизводимости 72,3% и показателе соответствия 81% (Патент. Способ диагностики стадии фиброза печени у пациентов с хроническим вирусным гепатитом С. Щекотова А.П., Булатова И.А., Щекотов В.В., Шелудько В.С., Насибуллина Н.И. RU 2601113 по заявке № 2015139205/15 от 27.10.2016).

Клинический пример. Больная Π ., 32 года. В течение 4 лет наблюдается у инфекциониста по поводу хронического гепатита C, 1-й генотип, вирусная нагрузка $1,15\times10^6$ копий/мл.

Таблица 2. Точки разделения, чувствительность и специфичность показателей тромбоцитов, АСТ и Φ НО- α для исключения фиброза печени

Table 2. The cutoff points, sensitivity, and specificity of platelet indices, aspartate aminotransferase, and tumor necrosis factor- α to rule out liver fibrosis

Показатели	Тромбоциты	ACT	ΦΗΟ-α	
Точка разделения	≥270×10 ⁹ /л	≤44 Е/л	≤1,9 пг/мл	
AUC	0,85±0,05	0,75±0,06	0,83±0,05	
Индекс Юдена	0,654	0,500	0,564	
p	0,0001	<0,0001	0,0001	
Чувствительность	96,2%	96,2%	92,3%	
Специфичность	69,2%	53,9%	64,1%	

Направлена в инфекционное отделение для проведения комбинированной противовирусной терапии. На момент осмотра пациентка предъявляет жалобы на небольшую утомляемость. Кожа и склеры физиологической окраски, печень $\pm 1,0$ см ниже края реберной дуги, живот безболезненный. Количество тромбоцитов в крови $248\times10^9/\pi$, активность АСТ в сыворотке крови — 39 Е/л, сывороточная концентрация Φ HO- α — 1,8 пг/мл. Расчет И Φ : И Φ =1,52- $0,0047\times248$ + $0,0091\times39$ + $0,0429\times1,8$ =0,8, что позволяет диагностировать умеренный Φ 4 фброз (F1-2). Результат согласуется с данными УЗЭ, при которой плотность печени составила 8,9 кПа (стадия F2).

Обсуждение

Уменьшение количества тромбоцитов и увеличение активности АСТ выше референтных уровней в крови традиционно позиционируются как непрямые показатели выраженного ФП. В частности, для дифференциации гепатита и цирроза широко применяется индекс APRI, определяемый по соотношению АСТ и тромбоцитов [8]. Снижение тромбоцитов ассоциировано с развитием портальной гипертензии на фоне фиброза, который закономерно сопровождается ремоделированием сосудистой системы печени [1]. Преимущественное повышение активности АСТ, связанной с митохондриальной фракцией, свидетельствует о тяжелом структурном поражении гепатоцитов. Менее выраженные изменения показателей тромбоцитов и АСТ определены при незначительном и умеренном фиброзе по сравнению с выраженным ФП (F3–4), что согласуется с литературными данными [8].

При хронических диффузных заболеваниях печени ключевым патогенетическим фактором развития фиброза является воспаление [1]. В этом плане представляет интерес исследование провоспалительных цитокинов, в том числе ФНО- α при ФП, повышение выработки которых коррелирует с нарушением функциональных проб печени [10]. Если снижение тромбоцитов при прогрессировании стадии фиброза в трех группах пациентов с ХГС отмечено ориентировочно в 1,5—2 раза, увеличение концентрации АСТ наблюдалось в 1,5—4 раза, то выработка ФНО- α возрастала в 2 раза во 2-й группе и в 14 раз у пациентов с выраженным фиброзом/циррозом (F3—4). В работе Левитана Б.Н. и соавт. (2017) установлено, что повышение TNF- α является признаком персистирующего системного воспаления

Литература

- Wynn A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008; 214(2):199–210. https://doi:10.1002 / path.2277.
- Saffioti F., Pinzani M. Development and Regression of Cirrhosis. Dig Dis. 2016;34(4):374–381. https://doi: 10.1159/000444550
- Baranova A., Lal P., Birerdinc A., Younossi Z.M. Non-invasive markers for hepatic fibrosis. *BMC Gastroenterol*. 2011;11:91. DOI: 10.1186/1471-230x-11-91.
- Sandrin L., Fourquet B., Hasquenoph J.M., Yon S., Fournier C., Mal F. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. *Ultrasound Med Biol.* 2003;29:1705–1713. http://dx.doi.org/10.1016/j.ultrasmedbio.2003.07.001.
- Chou R., Wasson N. Blood tests to diagnose fibrosis or cirrhosis in patients with chronic hepatitis C virus infection: a systematic review. *Ann. Intern. Med.* 2013;158:807–820. DOI: 10.7326/0003-4819-158-11-201306040-00005.
- Щекотова А.П., Булатова И.А., Ройтман А.П. Чувствительность и специфичность определения гиалуроновой кислоты, коэффициента де Ритиса и ВЭФР для диагностики ХГ и ЦП. Пермский медицинский журнал. 2013;4(30):84–89.
- Poynard T., Morra R., Halfon P., Castera L., Ratziu V., Imbert-Bismut F., et al. Meta-analyses of FibroTest diagnostic value in chronic liver

при циррозе и свидетельствует о прогрессировании заболевания [11]. Таким образом, показатели количества тромбоцитов, активности АСТ и концентрации Φ HO- α патогенетически связаны с тяжестью поражения печени на фоне воспаления, некроза гепатоцитов и формирования портальной гипертензии и являются непрямыми маркерами Φ П [1, 5].

Операционные характеристики предложенной панели — ИФ-ТАФ занимают промежуточную позицию между данными эластографии и Fibrotest, с одной стороны, и индексом APRI, с другой стороны. Эластография диагностирует цирроз печени (F4 METAVIR) с чувствительностью 94%, выявляет выраженный фиброз (F2-3) с чувствительностью 84% [4]. Чувствительность Fibrotest для диагностики стадий F2-F4 составляет 100%, специфичность — 61% [7]. Чувствительность для диагностики фиброза в целом составляет 83%. Значение индекса APRI более 2 предполагает наличие цирроза печени (т. е. F4) с чувствительностью 65% [12]. Тест APRI признан неэффективным при легком и умеренном ФП [13]. ИФ-ТАФ в значении 0-0,5 позволяет исключить ФП при ХГС с вероятностью 78%. При этом важно, что чувствительность панели рассчитана для диагностики разной выраженности фиброза, в том числе тяжелого ФП, и перехода гепатита в цирроз печени.

Таким образом, результаты подсчета ИФ-ТАФ в конкретных клинических ситуациях сопоставимы с данными современного информативного метода визуализации — ультразвуковой фиброэластографии. С учетом простоты и низкой себестоимости исследования ИФ может применяться для динамического наблюдения пациентов на фоне лечения.

Выводы

Лабораторные показатели количества тромбоцитов, активности АСТ и концентрации ФНО- α с чувствительностью 96,2–92,3% диагностируют отсутствие ФП и со специфичностью 53,9–69,0% исключают F1–4 (METAVIR).

Интегративный ИФ ТАФ позволяет диагностировать отсутствие фиброза (F0), умеренный (F1–2) и выраженный (F3–4) ФП у пациентов с ХГС с чувствительностью 83% и специфичностью 78%. Способ имеет хорошую воспроизводимость и может применяться как простой лабораторный метод диагностики и мониторинга течения заболевания, в том числе на фоне лечения.

- disease. *BMC Gastroenterol.* 2007;7:40–51. DOI: 10.1186/1471-230x-7-40.
- Williams A.L., Hoofnagle J.H. Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis. *Gastroenterol.* 1988;95(3):734–739.
- Pinzani M., Rombouts K., Colagrande S. Fibrosis in chronic liver diseases: diagnosis and management. J. Hepatol. 2005;42:22–36.
- Булатова И.А. Фиброз при хронических заболеваниях печени: механизмы развития, клинико-лабораторная оценка прогрессирования и мониторинг терапии. Автореф. дис. д-ра мед. наук. Пермь; 2016:50.
- 11. Левитан Б.Н., Астахин А.В., Левитан Г.Б. Фактор некроза опухоли и его растворимые рецепторы при хронических гепатитах и циррозах печени. Экспериментальная и клиническая гастроэнтерология. 2017;2(138):62–66.
- Lin Z.H., Xin Y.N., Dong Q.J., Wang Q., Jiang X.J., Zhan S.H., et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. *J. Hepatol.* 2011;53:726–736.
- Sebastiani G., Vario A., Guido M. Noninvasive assessment of liver fibrosis. Ann. Gastroenterol. 2012;3(25):218–231.

References

- Wynn A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008; 214(2): 199–210. doi: 10.1002 / path.2277.
- Saffioti F., Pinzani M. Development and Regression of Cirrhosis. Dig Dis. 2016;34(4):374–381. https://doi: 10.1159/000444550
- Baranova A., Lal P., Birerdinc A., Younossi Z.M. Non-invasive markers for hepatic fibrosis. *BMC Gastroenterol*. 2011;11:91. https://doi:10.1186/1471-230x-11-91
- Sandrin L., Fourquet B., Hasquenoph J.M., Yon S., Fournier C., Mal F. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. *Ultrasound Med. Biol.* 2003;29:1705–1713. http://dx.doi.org/10.1016/j.ultrasmedbio.2003.07.001.
- Chou R., Wasson N. Blood tests to diagnose fibrosis or cirrhosis in patients with chronic hepatitis C virus infection: a systematic review. *Ann. Intern. Med.* 2013;158:807–820. DOI: 10.7326/0003-4819-158-11-201306040-00005.
- Shchyokotova A.P., Bulatova I.A., Rojtman A.P. Chuvstvitel'nost' i specifichnost' opredeleniya gialuronovoj kisloty, koehfficienta de Ritisa i VEFR dlya diagnostiki HG i CP. Permskij medicinskij zhurnal. 2013;4(30):84–89 (In Russ.).
- Poynard T., Morra R., Halfon P., Castera L., Ratziu V., Imbert-Bismut F., et al. Meta-analyses of FibroTest diagnostic value in chronic liver

Информация о вкладе авторов

Щекотова А.П. — разработка концепции исследования, руководство научной темой исследования, интерпретация результатов, проверка и окончательное утверждение статьи для печати.

Булатова И.А. — разработка дизайна исследования, отбор больных для проведения исследования, курация лабораторных исследований,

Сведения об авторах

Щекотова Алевтина Павловна, д-р мед. наук, профессор, заведующая кафедрой клинической лабораторной диагностики факультета дополнительного профессионального образования, Пермский государственный медицинский университет имени академика Е.А. Вагнера.

E-mail: al shchekotova@mail.ru.

Булатова Ирина Анатольевна*, д-р мед. наук, профессор кафедры клинической лабораторной диагностики факультета дополнительного профессионального образования, Пермский государственный медицинский университет имени академика Е.А. Вагнера.

E-mail: bula.1977@mail.ru.

Соснин Дмитрий Юрьевич, д-р мед. наук, профессор кафедры клинической лабораторной диагностики факультета дополнительного профессионального образования, Пермский государственный медицинский университет имени академика Е.А. Вагнера.

E-mail: sosnin_dm@mail.ru.

Третьякова Юлия Игоревна, канд. мед. наук, доцент кафедры поликлинической терапии, Пермский государственный медицинский университет имени академика Е.А. Вагнера.

E-mail: tretyakovayi@gmail.com.

- disease. *BMC Gastroenterol.* 2007;7:40–51. DOI: 10.1186/1471-230x-7-40.
- Williams A.L., Hoofnagle J.H. Ratio of serum aspartate to alanine aminotransferase in chronic hepatitis. Relationship to cirrhosis. *Gastroenterol.* 1988;95(3):734–739.
- 9. Pinzani M., Rombouts K., Colagrande S. Fibrosis in chronic liver diseases: diagnosis and management. *J. Hepatol.* 2005;42:22–36.
- Bulatova I.A. Fibroz pri hronicheskih zabolevaniyah pecheni: mekhanizmy razvitiya, kliniko-laboratornaya ocenka progressirovaniya i monitoring terapii. Avtoref dis. ... dokt. med. nauk. Perm'; 2016:50 (In Russ.).
- 11. Levitan B.N., Astahin A.V., Levitan G.B. Faktor nekroza opuholi i ego rastvorimye receptory pri hronicheskih gepatitah i cirrozah pecheni. *Ehksperimental'naya i klinicheskaya gastroehnterologiya*. 2017;2(138):62–66 (In Russ.).
- 12. Lin Z.H., Xin Y.N., Dong Q.J., Wang Q., Jiang X.J., Zhan S.H., et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. *J. Hepatol.* 2011;53:726–736.
- 13. Sebastiani G., Vario A., Guido M. Noninvasive assessment of liver fibrosis. *Ann. Gastroenterol.* 2012;3(25):218–231.

статистический анализ и интерпретация, написание статьи.

Соснин Д.Ю. — курация больных, курация и анализ лабораторных данных, интерпретация результатов.

Третьякова Ю.И. — заполнение базы данных, курация больных, статистический анализ полученных данных.

Information about the authors

Alevtina P. Shchekotova, Dr. Sci. (Med.), Professor, Head of the Department of Clinical Laboratory Diagnostics Faculty, Faculty of Continuous Medical Education, Perm State Medical University n. a. E.A. Wagner.

E-mail: al shchekotova@mail.ru.

Irina A. Bulatova*, Dr. Sci. (Med.), Professor of the Department of Clinical Laboratory Diagnostics Faculty, Faculty of Continuous Medical Education, Perm State Medical University n. a. E.A. Wagner.

E-mail: bula.1977@mail.ru.

Dmitry Y. Sosnin, Dr. Sci. (Med.), Professor of the Department of Clinical Laboratory Diagnostics Faculty, Faculty of Continuous Medical Education, Perm State Medical University n. a. E.A. Wagner.

E-mail: sosnin_dm@mail.ru.

Yulia I. Tretyakova, Cand. Sci. (Med.), Associate Professor of the Department of Policlinic Therapy, Perm State Medical University n. a. E.A. Wagner.

E-mail: tretyakovayi@gmail.com.

Поступила 27.10.2018, принята к печати 08.02.2019 Received October 27, 2018, accepted for publication February 08, 2019