Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Composition and metabolic activity of the gut microbiota in obese children and adolescents

https://doi.org/10.29001/2073-8552-2020-35-3-38-46

Abstract

This review summarizes the results from national and international studies regarding the quantitative and qualitative composition of intestinal microbiota in health and the dominance of certain bacteria in the intestinal microbiota of obese children. Moreover, we discuss the relationships between the development of obesity and the changes in the composition and metabolic activity of intestinal microbiota in children. These analyses are of scientific interest from the perspective of finding new targets and approaches to conservative management aimed at preventing and treating obesity through the restoration of intestinal microflora.

About the Authors

Ju. G. Samoilova
Siberian State Medical University
Russian Federation

Julia G. Samoilova Dr. Sci. (Med.), Professor, Department of Endocrinology and Diabetology, Head of the Department of Children’s Diseases, Head of Clinical Research Center, Siberian State Medical University; Leading Specialist for Prevention, Department of Healthcare of the Tomsk Region Administration

2, Moscovsky tract, Tomsk, 634050, Russian Federation



O. A. Oleynik
Siberian State Medical University
Russian Federation

Oxana A. Oleynik, Cand. Sci. (Med.), Associate Professor, Department of Endocrinology and Diabetology

2, Moscovsky tract, Tomsk, 634050, Russian Federation



E. V. Sagan
Siberian State Medical University
Russian Federation

Elena V. Sagan, Assistant Professor, Department of Children’s Diseases 

2, Moscovsky tract, Tomsk, 634050, Russian Federation



I. N. Vorozhtsova
Siberian State Medical University
Russian Federation

Irina N. Vorozhtsova, Dr. Sci. (Med.), Professor, Head of the Department of Endocrinology and Diabetology 

2, Moscovsky tract, Tomsk, 634050, Russian Federation



T. A. Filippova
Siberian State Medical University
Russian Federation

Irina N. Vorozhtsova, Dr. Sci. (Med.), Professor, Head of the Department of Endocrinology and Diabetology 

2, Moscovsky tract, Tomsk, 634050, Russian Federation



N. S. Denisov
Siberian State Medical University
Russian Federation

Nikita S. Denisov, Medical Student 

2, Moscovsky tract, Tomsk, 634050, Russian Federation



D. A. Dyakov
Siberian State Medical University
Russian Federation

Denis A. Dyakov, Assistant Professor, Department of General Biochemistry and Molecular Biology with Course of Clinical Laboratory Diagnostics 

2, Moscovsky tract, Tomsk, 634050, Russian Federation



References

1. Sanz Y., Moya-Pérez A. Microbiota, inflammation and obesity. Adv. Exp. Med. Biol. 2014;817:291–317. DOI: 10.1007/978-1-4939-0897-4_14.

2. Winer D.A., Luck H., Tsai S., Winer S. The Intestinal Immune System in Obesity and Insulin Resistance. Cell Metab. 2016;23(3):413–426. DOI: 10.1016/j.cmet.2016.01.003.

3. Samoilova Y.G., Oleynik O.A., Sagan E.V., Denisov N.S., Vorozhtsova I.N., Kudlay D.A. et al. Microbiota and metabolic programming of obesity in children. Pediatria. Journal named after G.N. Speransky. 2020;99(1):209–216 (In Russ.). DOI: 10.24110/0031-403X-2020-99-1-209-216.

4. Mazankova L.N., Rybalchenko O.V., Nikolaev I.V. Microdisbios and endogenous infections: a guide for doctors. Moscow: GEOTAR-Media; 2018:336 (In Russ.).

5. Bernhardt H., Knoke M. Recent studies on the microbial ecology of the upper gastrointestinal tract. Infection. 1989;17(4):259–263. DOI: 10.1007/bf01639536.

6. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R. et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. DOI: 10.1038/nature09944.

7. Mbakwa C.A., Hermes G.D., Penders J., Savelkoul P.H., Thijs C., Dagnelie P.C. et al. Gut Microbiota and Body Weight in School-Aged Children: The KOALA Birth Cohort Study. Obesity (Silver Spring). 2018;26(11):1767–1776. DOI: 10.1002/oby.22320.

8. Ignacio A., Fernandes M.R., Rodrigues V.A., Groppo F.C., Cardoso A.L., Avila-Campos M.J. et al. Correlation between body mass index and faecalmicrobiota from children. Clin. Microbiol. Infect. 2016;22(3):258.e1–8. DOI: 10.1016/j.cmi.2015.10.031.

9. Hou Y.P., He Q.Q., Ouyang H.M., Peng H.S., Wang Q., Li J. et al. Human gut microbiota associated with obesity in chinese children and adolescents. Biomed. Res. Int. 2017;2017:7585989. DOI: 10.1155/2017/7585989.

10. Chen X., Sun H., Jiang F., Shen Y., Li X., Hu X. et al. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. Peer J. 2020;8:e8317. DOI: 10.7717/peerj.8317.

11. Zhong H., Penders J., Shi Z., Ren H., Cai K., Fang C. et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7(1):2. DOI: 10.1186/s40168-018-0608-z.

12. Méndez-Salazar E.O., Ortiz-López M.G., Granados-Silvestre M.L., Palacios-González B., Menjivar M. Altered gut microbiota and compositional changes in firmicutes and proteobacteria in Mexican undernourished and obese children. Front. Microbiol. 2018;9:2494. DOI: 10.3389/fmicb.2018.02494.

13. Riva A., Borgo F., Lassandro C., Verduci E., Morace G., Borghi E. et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol. 2017;19(1):95– 105. DOI: 10.1111/1462-2920.13463.

14. Sze M.A., Schloss P.D. Looking for a signal in the noise: Revisiting obesity and the microbiome. mBio. 2016;7(4):e01018–6. DOI: 10.1128/mBio.01018-16.

15. Rampelli S., Guenther K., Turroni S., Wolters M., Veidebaum T., Kourides Y. et al. Pre-obese children’s dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Commun. Biol. 2018;1:222. DOI: 10.1038/s42003-018-0221-5.

16. Nobili V., Putignani L., Mosca A., Chierico F.D., Vernocchi P., Alisi A. et al. Bifidobacteria and lactobacilli in the gut microbiome of children with non-alcoholic fatty liver disease: Which strains act as health players? Arch. Med. Sci. 2018;14(1):81–87. DOI: 10.5114/aoms.2016.62150.

17. Huerta-Ávila E.E., Ramírez-Silva I., Torres-Sánchez L.E., Díaz-Benítez C.E., Orbe-Orihuela Y.C., Lagunas-Martínez A. et al. High relative abundance of lactobacillus reuteri and fructose intake are associated with adiposity and cardiometabolic risk factors in children from Mexico city. Nutrients. 2019;11(6):1207. DOI: 10.3390/nu11061207.

18. Barczyńska R., Litwin M., Sliżewska K., Szalecki M., Berdowska A., Bandurska K. et al. Bacterial microbiota and fatty acids in the faeces of overweight and obese children. Pol. J. Microbiol. 2018;67(3):339–345. DOI: 10.21307/pjm-2018-041.

19. Goffredo M., Mass K., Parks E.J., Wagner D.A., McClure E.A., Graf J. et al. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J. Clin. Endocrinol. Metab. 2016;101(11):4367–4376. DOI: 10.1210/jc.2016-1797.

20. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107(33):14691–14696. DOI: 10.1073/pnas.1005963107.

21. Ou J., Carbonero F., Zoetendal E.G., DeLany J.P., Wang M., Newton K. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 2013;98(1):111– 120. DOI: 10.3945/ajcn.112.056689.

22. Furet J.P., Kong L.C., Tap J., Poitou C., Basdevant A., Bouillot J.-L. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–3057. DOI: 10.2337/db10-0253.

23. Verdam F.J., Fuentes S., de Jonge C., Zoetendal Er.G., Erbil R., Willem Greve J. et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity. 2013;21(12):E607– E615. DOI: 10.1002/oby.20466

24. Million M., Angelakis E., Paul M., Armougom F., Leibovici L., Raoult D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 2012;53(2):100– 108. DOI: 10.1016/j.micpath.2012.05.007.

25. Schwiertz A., Taras D., Schafer K., Beijer S., Bos N.A., Donus C. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–195. DOI: 10.1038/oby.2009.167.

26. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110(22):9066–9071. DOI: 10.1073/pnas.1219451110.

27. Del Chierico F., Abbatini F., Russo A., Quagliariello A., Reddel S., Capoccia D. et al. Gut microbiota markers in obese adolescent and adult patients: Age-dependent differential patterns. Front. Microbiol. 2018;9:1210. DOI: 10.3389/fmicb.2018.01210.

28. Sonnenburg J.L., Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64. DOI:10.1038/nature18846.

29. Mulders R.J., de Git K.C.G., Schéle E., Dickson S.L., Sanz Y., Adan R.A. Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obes. Rev. 2018;19(4):435–451. DOI: 10.1111/obr.12661.

30. Sanz Y., Moya-Pérez A. Microbiota, inflammation and obesity. Adv. Exp. Med. Biol. 2014;817:291–317. DOI: 10.1007/978-1-4939-0897-4_14.

31. Whitt J., Woo V., Lee P., Moncivaiz J., Haberman Y., Denson L. et al. Disruption of epithelial HDAC3 in intestine prevents diet-induced obesity in mice. Gastroenterology. 2018;155(2):501–513. DOI: 10.1053/j.gastro.2018.04.017.

32. Schroeder B.O., Birchenough G.M., Ståhlman M., Arike L., Johansson M.E., Hansson G.C. et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe. 2018;23(1):27–40.e7. DOI: 10.1016/j.chom.2017. 11.004.

33. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. DOI: 10.1038/nature12820.

34. Stojanović O., Trajkovski M. Microbiota guides insulin trafficking in beta cells. Cell Res. 2019;29(8):603–604. DOI: 10.1038/s41422-019-02005.

35. Everard A., Geurts L., Caesar R., Van Hul M., Matamoros S., Duparc T. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 2014;5:5648. DOI: 10.1038/ncomms6648.

36. Orbe-Orihuela Y.C., Lagunas-Martínez A., Bahena-Román M., Madrid-Marina V., Torres-Poveda K., Flores-Alfaro E. et al. High relative abundance of firmicutes and increased TNFα levels correlate with obesity in children. Salud. Publica Mex. 2018;60(1):5–11. DOI: 10.21149/8133.

37. Luck H., Khan S., Kim J.H., Copeland J.K., Revelo X.S., Tsai S. et al. Gut-associated IgA+ immune cells regulate obesity-related insulin resistance. Nat. Commun. 2019;10(1):3650. DOI: 10.1038/s41467-01911370-y.


Review

For citations:


Samoilova J.G., Oleynik O.A., Sagan E.V., Vorozhtsova I.N., Filippova T.A., Denisov N.S., Dyakov D.A. Composition and metabolic activity of the gut microbiota in obese children and adolescents. Siberian Journal of Clinical and Experimental Medicine. 2020;35(3):38-46. (In Russ.) https://doi.org/10.29001/2073-8552-2020-35-3-38-46

Views: 748


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)