Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Bronchial asthma in the genetic framework of cardiovascular continuum syntropy

https://doi.org/10.29001/2073-8552-2021-36-4-52-61

Abstract

Hypertension, coronary heart disease, myocardial infarction, obesity, and type 2 diabetes mellitus are common comorbidities in patients with bronchial asthma. The causes for developing these diseases are multifactorial and involve inherited genetic factors. However, little is known about the genes contributing to the development of comorbidities in bronchial asthma and cardiovascular disease continuum.
Objective. To examine the associations of genetic polymorphic variants potentially involved in the development of bronchial asthma comorbid with hypertension, coronary heart disease, type 2 diabetes mellitus, and obesity.
Material and Methods. Genotyping of 92 single nucleotide polymorphisms (SNPs) was performed using MALDI-TOF mass spectrometry in patients with bronchial asthma associated with cardiovascular/metabolic disorders (n = 162) compared with a control group of apparently healthy individuals (n = 153).
Results. The development of bronchial asthma phenotypes comorbid with cardiovascular/metabolic disorders was associated with the particular genetic variants affecting the expression of genes including CAT, TLR4, ELF5, ABTB2, UTP25, TRAF3IP3, NFKB1, LOC105377347, C1orf74, IRF6, and others in the target organs of study disease profile. Only one SNP (rs11590807), which is regulatory for the UTP25, IRF6, TRAF3IP3, and RP1-28O10.1 genes, was associated with all studied comorbid phenotypes of bronchial asthma and diseases of cardiovascular continuum.
Conclusion. The obtained results demonstrated that the identified SNPs affecting the expression of many genes may serve as potential biological markers of complex causal relationships between bronchial asthma and cardiometabolic disorders.

About the Authors

E. Yu. Bragina
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 Cand. Sci. (Biol.), Senior Research Scientist, Laboratory of Population Genetics

10, Nab. Ushaiki, Tomsk, 634050, Russian Federation 



I. A. Goncharova
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 Cand. Sci. (Biol.), Research Scientist, Laboratory of Population Genetics

10, Nab. Ushaiki, Tomsk, 634050, Russian Federation 



I. Zh. Zhalsanova
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 Junior Research Scientist, Laboratory of Genomics of Orphan Diseases 

10, Nab. Ushaiki, Tomsk, 634050, Russian Federation 



E. V. Nemerov
Siberian State Medical University 
Russian Federation

 Cand. Sci. (Biol.), Associate Professor, Department of General Medical Practice and Polyclinic Therapy

 2, Moskovsky tract, Tomsk, 634050, Russian Federation 



M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University
Russian Federation

 Dr. Sci. (Biol.), Head of the Laboratory of Population Genetics; Professor, Department of Medical Genetics

10, Nab. Ushaiki, Tomsk, 634050, Russian Federation 

 2, Moskovsky tract, Tomsk, 634050, Russian Federation 



M. B. Freidin
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

 Dr. Sci. (Biol.), Senior Research Scientist, Laboratory of Population Genetics

 10, Nab. Ushaiki, Tomsk, 634050, Russian Federation 



References

1. Stern J., Pier J., Litonjua A.A. Asthma epidemiology and risk factors. Semin. Immunopathol. 2020;42(1):5–15. DOI: 10.1007/s00281-020-00785-1.

2. Weatherburn C.J., Guthrie B., Mercer S.W., Morales D.R. Comorbidities in adults with asthma: Population-based cross-sectional analysis of 1.4 million adults in Scotland. Clin. Exp. Allergy. 2017;47(10):1246–1252. DOI: 10.1111/cea.12971.

3. Park S., Choi N.K., Kim S., Lee C.H. The relationship between metabolic syndrome and asthma in the elderly. Sci. Rep. 2018;8(1):9378. DOI: 10.1038/s41598-018-26621-z.

4. Kankaanranta H., Kauppi P., Tuomisto L.E., Ilmarinen P. Emerging сomorbidities in adult asthma: Risks, clinical associations, and mechanisms. Mediators Infl amm. 2016;2016:3690628. DOI: 10.1155/2016/3690628.

5. Su X., Ren Y., Li M., Zhao X., Kong L., Kang J. Prevalence of comorbidities in asthma and nonasthma patients: A meta-analysis. Medicine (Baltimore). 2016;95(22):e3459. DOI: 10.1097/MD.0000000000003459.

6. Johansson Å., Rask-Andersen M., Karlsson T., Ek W.E. Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifi es novel loci for asthma, hay fever and eczema. Hum. Mol. Genet. 2019;28(23):4022–4041. DOI: 10.1093/hmg/ddz175.

7. Bragina E.Y., Goncharova I.A., Garaeva A.F., Nemerov E.V., Babovskaya A.A., Karpov A.B. et al. Molecular relationships between bronchial asthma and hypertension as comorbid diseases. J. Integr. Bioinform. 2018;15(4):20180052. DOI: 10.1515/jib-2018-0052.

8. Bragina E.Yu., Goncharova I.A., Freidin M.B., Zhalsanova I.Zh., Gomboeva D.E., Nemerov E.V. et al. Analysis of haplotypes of CAT, TLR4, and IL10 genes in bronchial asthma patients comorbid with arterial hypertension. Siberian Scientifi c Medical Journal. 2019;39(6):55–64 (In Russ.). DOI: 10.15372/SSMJ20190607.

9. Puzyrev V.P. Genetic bases of human comorbidity. Russian Journal of Genetics. 2015;51(4):491–502 (In Russ.).

10. Zolotareva O., Saik O.V., Königs C., Bragina E.Y., Goncharova I.A., Freidin M.B. et al. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side eff ects. Sci. Rep. 2019;9(1):16302. DOI: 10.1038/s41598-019-52762-w.

11. Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Dosenko V.E. et al. Search for new candidate genes involved in the comorbidity of asthma and hypertension based on automatic analysis of scientifi c literature. J. Integr. Bioinform. 2018;15(4):20180054. DOI: 10.1515/jib-2018-0054.

12. Yu W., Gwinn M., Clyne M., Yesupriya A., Khoury M.J. A navigator for human genome epidemiology. Nat. Genet. 2008;40(2):124–125. DOI: 10.1038/ng0208-124.

13. Freĭdin M.B., Bragina E.Iu., Saltykova I.V., Deeva E.V., Ogorodova L.M., Puzyrev V.P. et al. Eff ect of additional disease (сomorbidity) on association of allergic rhinitis with KCNE4 gene rs12621643 variant. Russian Journal of Genetics. 2013;49(4):541–544 (In Russ.). DOI: 10.7868/S001667581304005X.

14. Swahn H., Sabith Ebron J., Lamar K.M., Yin S., Kerschner J.L., NandyMazumdar M. et al. Coordinate regulation of ELF5 and EHF at the chr11p13 CF modifi er region. J. Cell Mol. Med. 2019;23(11):7726–7740. DOI: 10.1111/jcmm.14646.

15. Zamel N., McClean P.A., Sandell P.R., Siminovitch K.A., Slutsky A.S. Asthma on Tristan da Cunha: Looking for the genetic link. The University of Toronto Genetics of Asthma Research Group. Am. J. Respir. Crit. Care Med. 1996;153(6):1902–1906. DOI: 10.1164/ajrccm.153.6.8665053.

16. Hebert-Schuster M., Fabre E.E., Nivet-Antoine V. Catalase polymorphisms and metabolic diseases. Curr. Opin. Clin. Nutr. Metab. Care. 2012;15(4):397–402. DOI: 10.1097/MCO.0b013e328354a326.

17. Li C., Ying W., Huang Z., Brehm T., Morin A., Vella A.T. et al. IRF6 regulates alternative activation by suppressing PPARγ in male murine macrophages. Endocrinology. 2017;158(9):2837–2847. DOI: 10.1210/en.2017-00053.

18. Margaryan S., Kriegova E., Fillerova R., Smotkova Kraiczova V., Manukyan G. Hypomethylation of IL1RN and NFKB1 genes is linked to the dysbalance in IL1β/IL-1Ra axis in female patients with type 2 diabetes mellitus. PLoS One. 2020;15(5):e0233737. DOI: 10.1371/journal.pone.0233737.

19. Ferreira M.A., Vonk J.M., Baurecht H., Marenholz I., Tian C., Hoff man J.D. et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017;49(12):1752–1757. DOI: 10.1038/ng.3985.

20. Bantulà M., Roca-Ferrer J., Arismendi E., Picado C. Asthma and obesity: Two diseases on the rise and bridged by infl ammation. J. Clin. Med. 2021;10(2):169. DOI: 10.3390/jcm10020169.

21. Pite H., Aguiar L., Morello J., Monteiro E.C., Alves A.C., Bourbon M. et al. Metabolic dysfunction and asthma: Current perspectives. J. Asthma Allergy. 2020;13:237–247. DOI: 10.2147/JAA.S208823.


Review

For citations:


Bragina E.Yu., Goncharova I.A., Zhalsanova I.Zh., Nemerov E.V., Nazarenko M.S., Freidin M.B. Bronchial asthma in the genetic framework of cardiovascular continuum syntropy. Siberian Journal of Clinical and Experimental Medicine. 2021;36(4):52-61. (In Russ.) https://doi.org/10.29001/2073-8552-2021-36-4-52-61

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)