Analysis of differential expression of lipid metabolism genes in atherosclerotic plaques in patients with coronary atherosclerosis
https://doi.org/10.29001/2073-8552-2021-36-4-156-163
Abstract
Aim. The goal of the study was to analyze the differential expression of lipid metabolism-related genes in the atherosclerotic plaques of different types in patients with coronary atherosclerosis.
Material and Methods. The study was performed on the specimens of atherosclerotic plaques in 45–65-year-old patients with coronary atherosclerosis with stable exertional angina functional class II-IV without acute coronary syndrome. Coronary atherosclerosis was verified by coronary angiography. Atherosclerotic plaque tissue was sampled intraoperatively when indicated. Whole-genome sequencing of ribonucleic acid (RNA) was performed using the TruSeq RNA Sample Preparation Kit (Illumina, USA).
Results. We analyzed the differences in the expression of 12 genes including LDLR, APOB, PCSK9, LDLRAP1, LIPA, STAP1, ABCA1, APOA1, APOE, LPL, SCARB1, and SREBF2 depending on the type of atherosclerotic plaques. The expression level of APOE gene was eight times higher in unstable atherosclerotic plaques of dystrophic-necrotic type (p < 0.0001). The expression levels of LDLR and APOB genes were eight times higher in stable atherosclerotic plaques (p < 0.0001). We did not find differences in the expression levels of the ABCG5, ABCG8, APOC3, CETP, CLPS, CYP7A1, and PNPLA5 genes.
Conclusion. The study showed the differences in the activity of individual metabolism-related genes in the atherosclerotic plaques of different types in patients with coronary atherosclerosis. Obtained data may become the basis for the development of test systems aimed at predicting the development of atherosclerotic process and its complications.
Keywords
About the Authors
E. V. ShakhtshneiderRussian Federation
Cand. Sci. (Med.), Leading Research Scientist, Laboratory of Molecular Genetic Study of Therapeutic Diseases; Leading Research Scientist, Laboratory
of Monogenic Forms of Common Human Diseases
175/1, B. Bogatkova str., Novosibirsk, 630089, Russian Federation
10, Lavrentieva ave., Novosibirsk, 630090, Russian Federation
D. E. Ivanoshchuk
Russian Federation
Junior Research Scientist, Laboratory of Human Molecular Genetics; Research Scientist, Laboratory of Molecular Genetic Study of Therapeutic Diseases
175/1, B. Bogatkova str., Novosibirsk, 630089, Russian Federation
10, Lavrentieva ave., Novosibirsk, 630090, Russian Federation
Yu. I. Ragino
Russian Federation
Dr. Sci. (Med.), Corresponding Member of the Russian Academy of Sciences, Professor, Chief Research Scientist
175/1, B. Bogatkova str., Novosibirsk, 630089, Russian Federation
V. S. Fishman
Russian Federation
Dr. Sci. (Med.), Leading Research Scientist, Department of Genomic Mechanisms of Ontogenesis
10, Lavrentieva ave., Novosibirsk, 630090, Russian Federation
Ya. V. Polonskaya
Russian Federation
Cand. Sci. (Med.), Senior Research Scientist, Laboratory of Clinical Biochemical and Hormonal Study of Therapeutic Diseases
175/1, B. Bogatkova str., Novosibirsk, 630089, Russian Federation
E. V. Kashtanova
Russian Federation
Dr. Sci. (Biol.), Senior Research Scientist, Laboratory of Clinical Biochemical and Hormonal Study of Therapeutic Diseases
175/1, B. Bogatkova str., Novosibirsk, 630089, Russian Federation
A. M. Chernyavsky
Russian Federation
PhD, MD, Professor, Honorary Scientist of the Russian Federation, Head of the Center for Aortic and Coronary Artery Surgery
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
I. S. Murashov
Russian Federation
junior researcher pathomorphology and electron microscopy laboratories
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
M. I. Voevoda
Russian Federation
a member of the Russian Academy of Sciences, PhD, MD, ScD, Professor, head of the Department of Human Molecular Genetics
10, Lavrentieva ave., Novosibirsk, 630090, Russian Federation
References
1. Noguchi T., Nakao K., Asaumi Y., Morita Y., Otsuka F., Kataoka Y. et al. Noninvasive сoronary рlaque imaging. J. Atheroscler. Thromb. 2018;25(4):281–293. DOI: 10.5551/jat.RV17019.
2. Lu M., Peng P., Qiao H., Cui Y., Ma L., Cui B. et al. Association between age and progression of carotid artery atherosclerosis: a serial high resolution magnetic resonance imaging study. Int. J. Cardiovasc. Imaging. 2019;35(7):1287–1295. DOI: 10.1007/s10554-019-01538-4.
3. Ahmadi A., Argulian E., Leipsic J., Newby D.E., Narula J. From subclinical atherosclerosis to plaque progression and acute coronary events: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019;74(12):1608–1617. DOI: 10.1016/j.jacc.2019.08.012.
4. Sulkava M., Raitoharju E., Levula M., Seppälä I., Lyytikäinen L.P., Mennander A. et al. Differentially expressed genes and canonical pathway expression in human atherosclerotic plaques – Tampere Vascular Study. Sci. Rep. 2017;7(1):41483. DOI: 10.1038/srep41483.
5. Levula M., Oksala N., Airla N., Zeitlin R., Salenius J-P., Järvinen O. et al. Genes involved in systemic and arterial bed dependent atherosclerosis – Tampere Vascular Study. PLoS One. 2012;7(4):e33787. DOI: 10.1371/journal.pone.0033787.
6. Ivanoschuk D.Е., Ragino Yu.I., Shakhtshneider E.V., Mikhailova S.V., Fishman V.S., Polonskaya Ya.V. et al. Analysis of differential expression of matrix metalloproteases in stable and unstable atherosclerotic lesions by a method of full genome sequencing of RNA: Рilot study. Russian Journal of Cardiology. 2018;(8):52–58 (In Russ.). DOI: 10.15829/1560-4071-2018-8-52-58.
7. Murashov I.S., Volkov A.M., Kazanskaya G.M., Kliver E.E., Chernyavsky A.M., Nikityuk D.B et al. Immunohistochemical features of different types of unstable atherosclerotic plaques of coronary аrteries. Bull. Exp. Biol. Med. 2018;166(1):102–106. DOI: 10.1007/s10517-018-4297-1.
8. Liu W., Zhao Y., Wu J. Gene expression profile analysis of the progression of carotid atherosclerotic plaques. Mol. Med. Rep. 2018;17(4):5789–5795. DOI: 10.3892/mmr.2018.8575.
9. Nazarenko M.S., Markov A.V., Sleptsov A.A., Koroleva I.A., Sharysh D.V., Zarubin A.A. et al. Comparative analysis of gene expression in vascular cells of patients with advanced atherosclerosis. Biomeditsinskaya Khimiya. 2018;64(5):416–422 (In Russ.). DOI: 10.18097/pbmc20186405416.
10. Vrablik M., Tichý L., Freiberger T., Blaha V., Satny M., Hubacek J.A. Genetics of familial рypercholesterolemia: New insights. Front. Genet. 2020;11:574474. DOI: 10.3389/fgene.2020.574474.
11. Lumsden A.L., Mulugeta A., Zhou A., Hyppönen E. Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine. 2020;59:102954. DOI: 10.1016/j.ebiom.2020.102954.
12. Welty F.K. Hypobetalipoproteinemia and abetalipoproteinemia: Liver disease and cardiovascular disease. Curr. Opin. Lipidol. 2020;31(2):49–55. DOI: 10.1097/MOL.0000000000000663.
13. Fuior E.V., Gafencu A.V. Apolipoprotein C1: Its pleiotropic effects in lipid metabolism and beyond. Int. J. Mol. Sci. 2019;20(23):5939. DOI: 10.3390/ijms20235939.
14. Marais A.D. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology. 2019;51(2):165–176. DOI: 10.1016/j.pathol.2018.11.002.
15. Low-Kam C., Rhainds D., Lo K.S., Barhdadi A., Boulé M., Alem S. et al. Variants at the APOE /C1/C2/C4 Locus Modulate Cholesterol Effl ux Capacity Independently of High-Density Lipoprotein Cholesterol. J. Am. Heart Assoc. 2018;7(16):e009545. DOI: 10.1161/JAHA.118.009545.
16. Shi Y., Andhey P.S., Ising C., Wang K., Snipes L.L., Boyer K. et al. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron. 2021;109(15):2413–2426.e7. DOI: 10.1016/j.neuron.2021.05.034.
17. Krishnan N., Chen X., Donnelly-Roberts D., Mohler E.G., Holtzman D.M., Gopalakrishnan S.M. Small molecule phenotypic screen identifi es novel regulators of LDLR expression. ACS Chem. Biol. 2020;15(12):3262–3274. DOI: 10.1021/acschembio.0c00851.
18. Sobati S., Shakouri A., Edalati M., Mohammadnejad D., Parvan R., Masoumi J. et al. PCSK9: A key target for the Treatment of Cardiovascular Disease (CVD). Adv. Pharm. Bull. 2020;10(4):502–511. DOI: 10.34172/apb.2020.062.
19. Crone B., Krause A.M., Hornsby W.E., Willer C.J., Surakka I. Translating genetic association of lipid levels for biological and clinical application. Cardiovasc. Drugs Ther. 2021;35(3):617–626. DOI: 10.1007/s10557-021-07156-4.
20. Schaefer E.J., Geller A.S., Endress G. The biochemical and genetic diagnosis of lipid disorders. Curr. Opin. Lipidol. 2019;30(2):56–62. DOI: 10.1097/MOL.0000000000000590.
21. Kumari A., Kristensen K.K., Ploug M., Winther A.L. The importance of lipoprotein lipase regulation in atherosclerosis. Biomedicines. 2021;9(7):782. DOI: 10.3390/biomedicines9070782.
22. Nakagawa Y., Shimano H. CREBH regulates systemic glucose and lipid metabolism. Int. J. Mol. Sci. 2018;19(5):1396. DOI: 10.3390/ijms19051396.
23. Aryal B., Price N.L., Suarez Y., Fernández-Hernando C. ANGPTL4 in metabolic and cardiovascular disease. Trends Mol. Med. 2019;25(8): 723–734. DOI: 10.1016/j.molmed.2019.05.010.
Review
For citations:
Shakhtshneider E.V., Ivanoshchuk D.E., Ragino Yu.I., Fishman V.S., Polonskaya Ya.V., Kashtanova E.V., Chernyavsky A.M., Murashov I.S., Voevoda M.I. Analysis of differential expression of lipid metabolism genes in atherosclerotic plaques in patients with coronary atherosclerosis. Siberian Journal of Clinical and Experimental Medicine. 2021;36(4):156-163. (In Russ.) https://doi.org/10.29001/2073-8552-2021-36-4-156-163