The use of 8-diff clinical blood testing of patients to assess the severity of the new coronavirus infection
https://doi.org/10.29001/2073-8552-2022-37-4-149-160
Abstract
Introduction. A new coronavirus infection causes a variety of changes in the body of an infected person, which can be monitored using clinical blood analysis. The capabilities of flow cytometry allow to expanding the range of analyzed cell populations, which gives a more complete picture of the patient’s condition and the course of infection process.
Aim. To study the extended 8-diff clinical blood analysis in patients with COVID-19 and to identify the parameters characterizing a severe course and an unfavorable outcome.
Material and Methods. The study group comprised 282 patients with a confirmed diagnosis of a new coronavirus infection. The following parameters of the extended 8-diff clinical blood test were evaluated: the total content of leukocytes and their populations, the number of reactive and antibody-synthesizing lymphocytes (RE-LYMPH, AS-LYMPH), indicators characterizing the reactivity and granularity of neutrophils (NEUT-RI, NEUT-GI), erythrocyte count, hemoglobin level, normoblast count, and platelet count. Statistical data were processed using the Statistica 10.0 software.
Results. The blood picture of patients with a severe course of COVID-19 as well as of those with an unfavorable outcome of disease was characterized by neutrophilia, normoblastemia, and an increase in the number of immature granulocytes. At the same time, there was a significant decrease in the number of lymphocytes and monocytes below the reference interval and a decrease in the number of eosinophils to the extent of complete absence. The performed logistic regression analysis allowed to determine the most significant hematological parameters in predicting the outcome of COVID-19 as follows: the total number of leukocytes (OR 1.3), neutrophils (OR 2.1), reactive neutrophils (OR 1.3), eosinophils (OR 0.05), monocytes (OR 0.2), lymphocytes (OR 0.4), and neutrophil-to-lymphocyte ratio (NLR) (OR 1.4). Also, the threshold values were established for these parameters as follows: the total number of leukocytes > 7.2 × 109/L, neutrophils > 5 × 109/L, reactive neutrophils > 48.6 Fi, eosinophils < 0.05 × 109/L, lymphocytes < 1.3 × 109/L, monocytes < 0.5 × 109/L, and NLR > 2.9 were associated with an unfavorable outcome of the disease.
Conclusion. The obtained data may be used for a comprehensive evaluation of COVID-19 patient condition along with other laboratory markers of the severe course of the infection.
About the Authors
T. A. SlesarevaRussian Federation
Tamara A. Slesareva, Doctor of Clinical Laboratory Diagnostics
6, Sosnoviy blvd., Kemerovo, 650002
O. V. Gruzdeva
Russian Federation
Olga V. Gruzdeva, Dr. Sci. (Med.), Professor of the Russian Academy of Sciences, Head of the Laboratory of Homeostasis Research
6, Sosnoviy blvd., Kemerovo, 650002;
22а, Voroshilova str., Kemerovo, 650002
O. L. Tarasova
Russian Federation
Olga L. Tarasova, Cand. Sci. (Med.), Head of Department of Pathological Physiology
22а, Voroshilova str., Kemerovo, 650002
A. A. Kuzmina
Russian Federation
Anastasia A. Kuzmina, Doctor of Clinical Laboratory Diagnostics
6, Sosnoviy blvd., Kemerovo, 650002
A. V. Alekseenko
Russian Federation
Alexey V. Alekseenko, Cand. Sci. (Med.), Head of the Department of Emergency Cardiology
6, Sosnoviy blvd., Kemerovo, 650002
Yu. A. Dyleva
Russian Federation
Yulia A. Dyleva, Cand. Sci. (Med.), Senior Research Scientist, Laboratory of Homeostasis Research
6, Sosnoviy blvd., Kemerovo, 650002
T. R. Dolinchik
Russian Federation
Tatyana R. Dolinchik, Doctor of Clinical Laboratory Diagnostics
6, Sosnoviy blvd., Kemerovo, 650002
E. D. Bazdyrev
Russian Federation
Evgeniy D. Bazdyrev, Dr. Sci. (Med.), Senior Research Scientist, Laboratory of Neurovascular Pathology
6, Sosnoviy blvd., Kemerovo, 650002
L. S. Gofman
Russian Federation
Ludmila S. Gofman, Pulmonologist
22, Oktyabrsky ave., Kemerovo, 650000
O. L. Barbarash
Russian Federation
Olga L. Barbarash, Dr. Sci. (Med.), Professor, Corresponding Member Full Member, Director of the Research Institute for Complex Problems of Cardiovascular Diseases
6, Sosnoviy blvd., Kemerovo, 650002;
22а, Voroshilova str., Kemerovo, 650002
References
1. Bazdyrev E.D. Coronavirus disease: A global problem of the 21st century. Complex Problems of Cardiovascular Diseases. 2020;9(2):6–16. (In Russ.). DOI: 10.17802/2306-1278-2020-9-2-6-16.
2. Santotoribio J.D., Nuñez-Jurado D., Lepe-Balsalobre E. Evaluation of routine blood tests for diagnosis of suspected coronavirus disease 2019. Clin. Lab. 2020;66(9). DOI: 10.7754/Clin.Lab.2020.200522.
3. Gibson P.G., Qin L., Puah S.H. COVID-19 acute respiratory distress syndrome (ARDS): clinical features and differences from typical preCOVID-19 ARDS. Med. J. Aust. 2020;213(2):54–56.e1. DOI: 10.5694/mja2.50674.
4. Zheng Y., Zhang Y., Chi H., Chen S., Peng M., Luo L. et al. The hemocyte counts as a potential biomarker for predicting disease progression in COVID-19: A retrospective study. Clin. Chem. Lab. Med. 2020;58(7):1106–1115. DOI: 10.1515/cclm-2020-0377.
5. Kwiecień I., Rutkowska E., Kulik K., Kłos K., Plewka K., Raniszewska A. .et al. Neutrophil maturation, reactivity and granularity research parameters to characterize and differentiate convalescent patients from active SARS-CoV-2 infection. Cells. 2021;10(9):2332. DOI: 10.3390/cells10092332.
6. Leppkes M., Knopf J., Nashberger E., Lindemann A., Singh J., Herrmann I. et al. Vascular occlusion with neutrophil extracellular traps in COVID-19. EBioMedicine. 2020;58:102925. DOI: 10.1016/j.ebiom.2020.102925.
7. Yang L., Liu S., Liu J., Zhang Z., Wan X., Huang B. et al. COVID-19: Immunopathogenesis and Immunotherapeutics. Signal Transduct. Target. Ther. 2020;5(1):128. DOI: 10.1038/s41392-020-00243-2.
8. Cabrera L.E., Pekkarinen P.T., Alander M., Nowlan K.H.A., Nguyen N.A., Jokiranta S. et al. Characterization of low growth granulocytes in COVID-19. PLoS Pathogens. 2021;17(7):e1009721. DOI: 10.1371/journal.ppat.1009721.
9. Tanni F., Akker E., Zaman M.M., Figueroa N., Tharian B., Hupart K.H. Eosinopenia and COVID-19. J. Am. Osteopath. Assoc. 2020;120(8):504– 508.
10. Bass D.A. Behavior of eosinophil leukocytes in acute inflammation. II. Eosinophil dynamics during acute inflammation. J. Clin. Invest. 1975;56(4):870–9. DOI: 10.7556/jaoa.2020.091.
11. Pan F., Yang L., Li Y., Liang B., Li L., Ye T. et al. Factors associated with mortality in patients with severe coronavirus disease-19 (COVID-19): A case-control study. Int. J. Med. Sci. 2020;17(9):1281–1292. DOI: 10.7150/ijms.46614.
12. Dandekar A.A., Perlman S. Immunopathogenesis of coronavirus infections: Implications for SARS. Nat. Rev. Immunol. 2005;5(12):917–927. DOI: 10.1038/nri1732.
13. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y. et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005;202(3):415– 424. DOI: 10.1084/jem.20050828.
14. Yarilin А.А. Immunology: Textbook. Moscow: GEOTAR-Media; 2010:752. (In Russ.).
15. Martens R. J.H., van Adrichem A.J., Mattheij N.J.A., Brouwer C.G., van Twist D.J.L., Broerse J.J.C.R. et al. Hemocytometric characteristics of COVID-19 patients with and without cytokine storm syndrome on the Sysmex XN-10 hematology analyzer. Clin. Chem. Lab. Med. 2021;59(4):783–793. DOI: 10.1515/cclm-2020-1529.
16. Bläckberg A., Fernström N., Sarbrant E., Rasmussen M., Sunnerhagen T. Antibody kinetics and clinical course of COVID-19 a prospective observational study. PLoS One. 2021;16(3):e0248918. DOI: 10.1371/journal.pone.0248918.
17. Knoll R., Schultze J.L., Schulte-Schlepping J. Monocytes and macrophages in COVID-19. Front. Immunol. 2021;12:720109. DOI: 10.3389/ fimmu.2021.720109.
18. Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y. et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev. 2020;7(6):998–1002. DOI: 10.1093/nsr/nwaa041.
19. Erdogan A., Can F.E., Gönüllü H. Evaluation of the prognostic role of NLR, LMR, PLR, and LCR ratio in COVID-19 patients. J. Med. Virol. 2021;93(9):5555–5559. DOI: 10.1002/jmv.27097.
20. Constantino B.T., Kogionis B. Nuclear RBCs-Significance in a peripheral blood film. Laboratory Medicine. 2000;31(4):223–229.
21. Kuert S., Holland-Letz T., Friese J., Stachon A. Association of nucleated red blood cells in blood and arterial oxygen partial tension. Clin. Chem. Lab. Med. 2011;49(2):257–263. DOI: 10.1515/CCLM.2011.041.
22. Linssen J., Ermens A., Berrevoets M., Seghezzi M., Previtali G., van der Sar-van der Brugge S. et al. A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study. Elife. 2020;9:e63195. DOI: 10.7554/eLife.63195.
Review
For citations:
Slesareva T.A., Gruzdeva O.V., Tarasova O.L., Kuzmina A.A., Alekseenko A.V., Dyleva Yu.A., Dolinchik T.R., Bazdyrev E.D., Gofman L.S., Barbarash O.L. The use of 8-diff clinical blood testing of patients to assess the severity of the new coronavirus infection. Siberian Journal of Clinical and Experimental Medicine. 2022;37(4):149-160. (In Russ.) https://doi.org/10.29001/2073-8552-2022-37-4-149-160