Effects of a high-carbohydrate high-fat diet on liver morphology in young and old rats
https://doi.org/10.29001/2073-8552-2023-38-1-126-132
Abstract
The liver is a complex metabolic organ that, through the regulation of energy metabolism, maintains the homeostasis of the whole organism.
Aim: To establish the morphological changes in hepatocytes and the expression of endothelial vascular factor in a high-carbohydrate high-fat diet (HCHFD) depending on age.
Material and Methods. A histological study of the liver was carried out in four groups of male Wistar rats: 1st group – 5-month-old animals on a standard diet; 2nd group – 5-month-old animals on HCHFD for 90 days (from 2 months of age); 3rd group – 18-month-old animals on a standard diet; 4th group – 18-month-old animals on HCHFD for 90 days (from 15 months of age). Using morphometric methods, the specific volumes (%) of unchanged and binuclear hepatocytes, sinusoidal capillaries, inflammatory infiltrates, and foci of fibrosis in the liver were determined. The expression of vascular endothelial growth factor (VEGF) in endothelial cells and hepatocytes was evaluated by immunohistochemical method. The concentration of cholesterol and triglycerides was determined by the enzymatic colorimetric method in the blood serum and in the liver.
Results. A morphological study revealed a significant expansion of sinusoidal capillaries in groups 2 and 4. A statistically significant increase in the specific volume of hepatocytes with vacuolar inclusions, binuclear hepatocytes, fibrous foci and small inflammatory infiltrates was detected in the 4th group. VEGF expression increased in hepatocytes of groups 2 and 4. Biochemical study found an increase in the concentration of triglycerides in the rats’ liver of the 4th group. Thus, HCHFD, despite the pronounced signs of regeneration, increased age-related changes in the liver of old rats.
About the Authors
L. R. MustafinaRussian Federation
Liliia R. Mustafina - Dr. Sci. (Med.), Associate Professor, Professor, Department of Histology, Embryology, and Cytology, Siberian State Medical University of the Ministry of Health of the Russian Federation.
2, Moskovsky tract, Tomsk, 634050
S. V. Logvinov
Russian Federation
Sergey V. Logvinov - Dr. Sci. (Med.), Professor, Head of the Department of Histology, Embryology, and Cytology, Siberian State Medical University of the Ministry of Health of the Russian Federation; Senior Research Scientist, Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.
2, Moskovsky tract, Tomsk, 634050; 111a, Kievskaya str., Tomsk, 634012
L. I. Bogdanova
Russian Federation
Liliya I. Bogdanova - 4th year student, Medical Faculty, Siberian State Medical University of the Ministry of Health of the Russian Federation.
2, Moskovsky tract, Tomsk, 634050
B. K. Kurbatov
Russian Federation
Boris K. Kurbatov - Junior Research Scientist, Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.
111a, Kievskaya str., Tomsk, 634012
References
1. Tapsell L.C., Neale E.P., Satija A., Hu F.B. Foods, Nutrients, and dietary patterns: interconnections and implications for dietary guidelines. Adv. Nutr. 2016;7(3):445–454. DOI: 10.3945/an.115.011718.
2. GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;393(10184):1958–1972. DOI: 10.1016/S0140-6736(19)30041-8.
3. Elizabeth L., Machado P., Zinöcker M., Baker P., Lawrence M. Ultra-processed foods and health outcomes: A narrative review. Nutrients. 2020;12(7):1955. DOI: 10.3390/nu12071955.
4. Hunt N.J., Kang S.W.S., Lockwood G.P., Le Couteur D.G., Cogger V.C. Hallmarks of aging in the liver. Comput. Struct. Biotechnol. J. 2019;17:1151–1161. DOI: 10.1016/j.csbj.2019.07.021.
5. Drożdż K., Nabrdalik K., Hajzler W., Kwiendacz H., Gumprecht J., Lip G.Y.H. Metabolic-associated fatty liver disease (MAFLD), diabetes, and cardiovascular disease: associations with fructose metabolism and gut microbiota. Nutrients. 2021;14(1):103. DOI: 10.3390/nu14010103.
6. Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018;75(18):3313–3327. DOI: 10.1007/s00018-018-2860-6.
7. Vlad M., Ionescu N., Ispas A.T., Giuvărăşteanu I., Ungureanu E., Stoica C. Morphological changes during acute experimental short-term hyperthermia. Rom. J. Morphol. Embryol. 2010;51(4):739–744.
8. Maeso-Díaz R., Ortega-Ribera M., Fernández-Iglesias A., Hide D., Muñoz L., Hessheimer A.J. et al. Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell. 2018;17(6):e12829. DOI: 10.1111/acel.12829.
9. Miyaoka Y., Ebato K., Kato H., Arakawa S., Shimizu S., Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 2012;22(13):1166–1175. DOI: 10.1016/j.cub.2012.05.016.
10. Cai J., Hu M., Chen Z., Ling Z. The roles and mechanisms of hypoxia in liver fibrosis. J. Transl. Med. 2021;19(1):186. DOI: 10.1186/s12967-021-02854-x.
11. Le Couteur D.G., Lakatta E.G. A vascular theory of aging. J. Gerontol. A Biol. Sci. Med. Sci. 2010;65(10):1025–1027. DOI: 10.1093/gerona/glq135.
12. Wang W.L., Zheng X.L., Li Q.S., Liu W.Y., Hu L.S., Sha H.C. et al. The effect of aging on VEGF/VEGFR2 signal pathway genes expression in rat liver sinusoidal endothelial cell. Mol. Cell. Biochem. 2021;476(1):269–277. DOI: 10.1007/s11010-020-03903-7.
13. Cheluvappa R., Hilmer S.N., Kwun S.Y., Jamieson H.A., O’Reilly J.N., Muller M. et al. The effect of old age on liver oxygenation and the hepatic expression of VEGF and VEGFR2. Exp. Gerontol. 2007;42(10):1012–1019. DOI: 10.1016/j.exger.2007.06.001.
14. Mariotti V., Fiorotto R., Cadamuro M., Fabris L., Strazzabosco M. New insights on the role of vascular endothelial growth factor in biliary pathophysiology. JHEP Rep. 2021;3(3):100251. DOI: 10.1016/j.jhepr.2021.100251.
15. Adas G., Koc B., Adas M., Duruksu G., Subasi C., Kemik O. et al. Effects of mesenchymal stem cells and VEGF on liver regeneration following major resection. Langenbecks Arch. Surg. 2016;401(5):725–740. DOI: 10.1007/s00423-016-1380-9.
16. Kambakamba P., Linecker M., Schneider M., Kron P., Limani P., Tschuor C. et al. Novel benefits of remote ischemic preconditioning through VEGF-dependent protection from resection-induced liver failure in the mouse. Ann. Surg. 2018;268(5):885–893. DOI: 10.1097/SLA.0000000000002891.
17. Lee A.R., Baek S.M., Lee S.W., Kim T.U., Han J.E., Bae S. et al. Nuclear VEGFR-2 expression of hepatocytes is involved in hepatocyte proliferation and liver regeneration during chronic liver injury. In Vivo. 2021;35(3):1473–1483. DOI: 10.21873/invivo.12400.
18. Wang P., Lu Z., He M., Shi B., Lei X., Shan A. The effects of endoplasmic-reticulum-resident selenoproteins in a nonalcoholic fatty liver disease pig model induced by a high-fat diet. Nutrients. 2020;12(3):692. DOI: 10.3390/nu12030692.
Review
For citations:
Mustafina L.R., Logvinov S.V., Bogdanova L.I., Kurbatov B.K. Effects of a high-carbohydrate high-fat diet on liver morphology in young and old rats. Siberian Journal of Clinical and Experimental Medicine. 2023;38(1):126-132. (In Russ.) https://doi.org/10.29001/2073-8552-2023-38-1-126-132