Preview

Сибирский журнал клинической и экспериментальной медицины

Расширенный поиск

Возможности денситометрии в оценке диффузных изменений паренхимы легких (обзор литературы)

https://doi.org/10.29001/2073-8552-2023-39-3-23-31

Аннотация

Данные, полученные при проведении компьютерной томографии (КТ) органов грудной клетки, можно проанализировать не только визуально, но и численно. Количественная оценка позволяет более точно и объективно оценить степень тяжести заболевания. Наиболее изученным способом количественной оценки данных КТ является денситометрия – автоматический анализ плотностных показателей легких, выраженных в единицах Хаунсфилда. Данный обзор посвящен типам заболеваний, для которых возможна формализация диагностической задачи и применение денситометрии, а также ограничениям метода и способам их преодоления.

Об авторах

М. М. Сучилова
Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы
Россия

Сучилова Мария Максимовна, младший научный сотрудник

127051, Российская Федерация, Москва, ул. Петровка, 24, стр. 1



И. А. Блохин
Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы
Россия

Блохин Иван Андреевич, начальник сектора исследований в лучевой диагностике

127051, Российская Федерация, Москва, ул. Петровка, 24, стр. 1



М. Р. Коденко
Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы
Россия

Коденко Мария Романовна, младший научный сотрудник

127051, Российская Федерация, Москва, ул. Петровка, 24, стр. 1



Р. В. Решетников
Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы
Россия

Решетников Роман Владимирович, канд. физ.-мат. наук, руководитель отдела научных медицинских исследований

127051, Российская Федерация, Москва, ул. Петровка, 24, стр. 1



А. Е. Николаев
Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы
Россия

Николаев Александр Евгеньевич, младший научный сотрудник

127051, Российская Федерация, Москва, ул. Петровка, 24, стр. 1



О. В. Омелянская
Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы
Россия

Омелянская Ольга Васильевна, руководитель по управлению подразделениями Дирекции Наука

127051, Российская Федерация, Москва, ул. Петровка, 24, стр. 1



А. В. Владзимирский
Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы; Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Россия

Владзимирский Антон Вячеславович, д-р мед. наук, заместитель директора по научной работе; профессор кафедры информационных и интернет-технологий

0000-0002-2990-7736

127051, Российская Федерация, Москва, ул. Петровка, 24, стр. 1;
119991, Российская Федерация, Москва, ул. Трубецкая, 8, стр. 2



Список литературы

1. Mascalchi M., Diciotti S., Sverzellati N., Camiciottoli G., Ciccotosto C., Falaschi F. et al. Low agreement of visual rating for detailed quantification of pulmonary emphysema in whole-lung CT. Acta Radiol. 2012;53(1):53–60. DOI: 10.1258/ar.2011.110419.

2. Ng C.S., Desai S.R., Rubens M.B., Padley S.P., Wells A.U., Hansell D.M. Visual quantitation and observer variation of signs of small airways disease at inspiratory and expiratory CT. J. Thorac. Imaging. 1999;14(4):279–285. DOI: 10.1097/00005382-199910000-00008.

3. Siemienowicz M.L., Kruger S.J., Goh N.S., Dobson J.E., Spelman T.D., Fabiny R.P. Agreement and mortality prediction in high-resolution CT of diffuse fibrotic lung disease. J. Med. Imaging Radiat. Oncol. 2015;59(5):555–563. DOI: 10.1111/1754-9485.12314.

4. Walsh S.L.F., Hansell D.M. High-resolution CT of interstitial lung disease: A continuous evolution. Semin. Respir. Crit. Care Med. 2014;35(1):129–144. DOI: 10.1055/s-0033-1363458.

5. Asil K., Kalaycıoğlu B., Mahmutyazıcıoğlu K. Individual factors affecting computed tomography densitometry measurements. The International Annals of Medicine. 2018;2(12). DOI: 10.24087/IAM.2018.2.12.680.

6. Ringheim H., Thudium R.F., Jensen J.S., Rezahosseini O., Nielsen S.D. Prevalence of emphysema in people living with human immunodeficiency virus in the current combined antiretroviral therapy era: A systematic review. Front. Med. (Lausanne). 2022;9:897773. DOI: 10.3389/fmed.2022.897773.

7. Romei C., Castellana R., Conti B., Bemi P., Taliani A., Pistelli F. et al. Quantitative texture-based analysis of pulmonary parenchymal features on chest CT: comparison with densitometric indices and short-term effect of changes in smoking habit. Eur. Respir. J. 2022;60(4):2102618. DOI: 10.1183/13993003.02618-2021.

8. Lagrange J.L., Brassard N., Costa A., Aubanel D., Héry M., Bruneton J.N. et al. CT measurement of lung density: the role of patient position and value for total body irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1987;13(6):941–944. DOI: 10.1016/0360-3016(87)90111-8.

9. Lynch D.A. Progress in imaging COPD, 2004–2014. Chronic Obstr. Pulm. Dis. 2014;1(1):73–82. DOI: 10.15326/jcopdf.1.1.2014.0125.

10. Yanase J., Triantaphyllou E. A systematic survey of computer-aided diagnosis in medicine: Past and present developments. Expert Systems with Applications. 2019;138:112821. DOI: 10.1016/j.eswa.2019.112821.

11. Bankman I. (ed.) Handbook of medical image processing and analysis. 2-nd ed. San Diego, United States: Elsevier Science Publishing Co Inc.; 2008:1000.

12. Loeh B., Brylski L.T., von der Beck D., Seeger W., Krauss E., Bonniaud P. et al. Lung CT densitometry in idiopathic pulmonary fibrosis for the prediction of natural course, severity, and mortality. Chest. 2019;155(5):972–981. DOI: 10.1016/j.chest.2019.01.019.

13. Hoffman E.A., Ahmed F.S., Baumhauer H., Budoff M., Carr J.J., Kronmal R. et al. Variation in the percent of emphysema-like lung in a healthy, nonsmoking multiethnic sample. The MESA lung study. Ann. Am. Thorac. Soc. 2014;11(6):898–907. DOI: 10.1513/AnnalsATS.201310-364OC.

14. Walsdorff M., Van Muylem A., Gevenois P.A. Effect of total lung capacity and gender on CT densitometry indexes. BJR. 2016;89(1058):20150631. DOI: 10.1259/bjr.20150631.

15. Avila N.A., Kelly J.A., Dwyer A.J., Johnson D.L., Jones E.C., Moss J. Lymphangioleiomyomatosis: Correlation of qualitative and quantitative thin-section CT with pulmonary function tests and assessment of dependence on pleurodesis. Radiology. 2002;223(1):189–197. DOI: 10.1148/radiol.2231010315.

16. Crossley D., Renton M., Khan M., Low E.V., Turner A.M. CT densitometry in emphysema: a systematic review of its clinical utility. Int. J. Chron. Obstruct. Pulmon. Dis. 2018;13:547–563. DOI: 10.2147/COPD.S143066.

17. Jou S.S., Yagihashi K., Zach J.A., Lynch D., Suh Y.J. Relationship between current smoking, visual CT findings and emphysema index in cigarette smokers. Clinical Imaging. 2019;53:195–199. DOI: 10.1016/j.clinimag.2018.10.024.

18. Эмфизема легких. Большая российская энциклопедия – электронная версия. Accessed February 8, 2023. URL: https://old.bigenc.ru/medicine/text/4935239 (13.04.2023).

19. Viegi G., Pistelli F., Sherrill D.L., Maio S., Baldacci S., Carrozzi L. Definition, epidemiology and natural history of COPD. Eur. Resp. J. 2007;30(5):993–1013. DOI: 10.1183/09031936.00082507.

20. Carr L.L., Jacobson S., Lynch D.A., Foreman M.G., Flenaugh E.L., Hersh C.P. et al. Features of COPD as predictors of lung cancer. Chest. 2018;153(6):1326–1335. DOI: 10.1016/j.chest.2018.01.049.

21. Николаев А.Е., Блохин И.А., Лбова О.А., Дадакина И.С., Гомболевский В.А., Морозов С.П. Три клинически значимые находки при скрининге рака легких. Туберкулез и болезни легких. 2019;97(10):37–44. DOI: 10.21292/2075-1230-2019-97-10-37-44.

22. Yasuura Y., Terada Y., Mizuno K., Kayata H., Hayato K., Kojima H. et al. Quantitative severity of emphysema is related to the prognostic outcome of early-stage lung cancer. Eur. J. Cardiothorac. Surg. 2022;62(5):ezac499. DOI: 10.1093/ejcts/ezac499.

23. Ezponda A., Casanova C., Divo M., Marín-Oto M., Cabrera C., Marín J.M. et al. Chest CT-assessed comorbidities and all-cause mortality risk in COPD patients in the BODE cohort. Respirology. 2022;27(4):286–293. DOI: 10.1111/resp.14223.

24. Bakker J.T., Klooster K., Vliegenthart R., Slebos D.J. Measuring pulmonary function in COPD using quantitative chest computed tomography analysis. Eur. Respir. Rev. 2021;30(161):210031. DOI: 10.1183/16000617.0031-2021.

25. Cavigli E., Camiciottoli G., Diciotti S., Orlandi I., Spinelli C., Meoni E. et al. Whole-lung densitometry versus visual assessment of emphysema. Eur. Radiol. 2009;19(7):1686–1692. DOI: 10.1007/s00330-009-1320-y.

26. Chen H., Zeng Q.S., Zhang M., Chen R.C., Xia T.T., Wang W. et al. Quantitative low-dose computed tomography of the lung parenchyma and airways for the differentiation between chronic obstructive pulmonary disease and asthma patients. RES. 2017;94(4):366–374. DOI: 10.1159/000478531.

27. Loh L.C., Ong C.K., Koo H.J., Lee S.M., Lee J.S., Oh Y.M. et al. A novel CT-emphysema index/FEV1 approach of phenotyping COPD to predict mortality. Int. J. Chron. Obstruct Pulmon. Dis. 2018;13:2543–2550. DOI: 10.2147/COPD.S165898.

28. QIBA Profile: Computed Tomography: Lung Densitometry; Alliance QIB. Radiological Society of North America; 2021. URL: https://qibawiki.rsna.org/images/a/a8/QIBA_CT_Lung_Density_Profile_090420-clean.pdf (13.04.2023).

29. Nguyen-Kim T.D.L., Maurer B., Suliman Y.A., Morsbach F., Distler O., Frauenfelder T. The impact of slice-reduced computed tomography on histogram-based densitometry assessment of lung fibrosis in patients with systemic sclerosis. J. Thorac. Dis. 2018;10(4):2142–2152. DOI: 10.21037/jtd.2018.04.39.

30. Alevizos M.K., Danoff S.K., Pappas D.A., Lederer D.J., Johnson C., Hoffman E.A. et al. Assessing predictors of rheumatoid arthritis-associated interstitial lung disease using quantitative lung densitometry. Rheumatology (Oxford). 2022;61(7):2792–2804. DOI: 10.1093/rheumatology/keab828.

31. Tao Q., Zhu T., Ge X., Gong S., Guo J. The application value of spiral CT lung densitometry software in the diagnosis of radiation-induced lung injury. Contrast Media & Molecular Imaging. 2021;2021:e9305508. DOI: 10.1155/2021/9305508.

32. Carvalho A.R.S., Guimarães A.R., Sztajnbok F.R., Rodrigues R.S., Silva B.R.A., Lopes A.J. et al. Automatic quantification of interstitial lung disease from chest computed tomography in systemic sclerosis. Front. Med. (Lausanne). 2020;7:577739. DOI: 10.3389/fmed.2020.577739.

33. Abuladze L.R., Blokhin I.A., Gonchar A.P., Suchilova M.M., Vladzymyrskyy A.V., Gombolevskiy V.A. et al. CT imaging of HIV-associated pulmonary disorders in COVID-19 pandemic. Clinical Imaging. 2023;95:97–106. DOI: 10.1016/j.clinimag.2023.01.006.

34. Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–1952. DOI: 10.1016/S0140-6736(17)30866-8.

35. Easthausen I., Podolanczuk A., Hoffman E., Kawut S., Oelsner E., Kim J.S. et al. Reference values for high attenuation areas on chest CT in a healthy, never-smoker, multi-ethnic sample: The MESA study. Respirology. 2020;25(8):855–862. DOI: 10.1111/resp.13783.

36. Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–1952. DOI: 10.1016/S0140-6736(17)30866-8.

37. Kim G.H.J., Weigt S.S., Belperio J.A., Brown M.S., Shi Y., Lai J.H. et al. Prediction of idiopathic pulmonary fibrosis progression using early quantitative changes on CT imaging for a short term of clinical 18–24-month follow-ups. Eur. Radiol. 2020;30(2):726–734. DOI: 10.1007/s00330-019-06402-6.

38. Best A.C., Meng J., Lynch A.M., Bozic C.M., Miller D., Grunwald G.K. et al. Idiopathic pulmonary fibrosis: physiologic tests, quantitative CT indexes, and CT visual scores as predictors of mortality. Radiology. 2008;246(3):935–940. DOI: 10.1148/radiol.2463062200.

39. Humphries S.M., Mackintosh J.A., Jo H.E., Walsh S.L.F., Silva M., Calandriello L. et al. Quantitative computed tomography predicts outcomes in idiopathic pulmonary fibrosis. Respirology. 2022;27(12):1045–1053. DOI: 10.1111/resp.14333.

40. Jacob J., Bartholmai B.J., Rajagopalan S., Kokosi M., Nair A., Karwoski R. et al. Mortality prediction in idiopathic pulmonary fibrosis: evaluation of computer-based CT analysis with conventional severity measures. Eur. Respir. J. 2017;49(1):1601011. DOI: 10.1183/13993003.01011-2016.

41. De Giacomi F., Raghunath S., Karwoski R., Bartholmai B.J., Moua T. Short-term automated quantification of radiologic changes in the characterization of idiopathic pulmonary fibrosis versus nonspecific interstitial pneumonia and prediction of long-term survival. J. Thorac. Imaging. 2018;33(2):124–131. DOI: 10.1097/RTI.0000000000000317.

42. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Белевский А.С., Демура С.А., Илькович М.М. и др. Диагностика и лечение идиопатического легочного фиброза. Федеральные клинические рекомендации. Пульмонология. 2016;26(4):399–419. DOI: 10.18093/0869-0189-2016-26-4-399-419.

43. Ando K., Sekiya M., Tobino K., Takahashi K. Relationship between quantitative CT metrics and pulmonary function in combined pulmonary fibrosis and emphysema. Lung. 2013;191(6):585–591. DOI: 10.1007/s00408-013-9513-1.

44. Wisselink H.J., Pelgrim G.J., Rook M., van den Berge M., Slump K., Nagaraj Y. et al. Potential for dose reduction in CT emphysema densitometry with post-scan noise reduction: a phantom study. BJR. 2020;93(1105):20181019. DOI: 10.1259/bjr.20181019.

45. Choromańska A., Macura K.J. Role of computed tomography in quantitative assessment of emphysema. Pol. J. Radiol. 2012;77(1):28–36. DOI: 10.12659/pjr.882578.

46. Гаврилов П.В., Грива Н.А., Торкатюк Е.А. Оценка воспроизводимости программного анализа объема эмфиземы: сравнительный анализ результатов при оценке различными программными продуктами. Лучевая диагностика и терапия. 2021;11(4):37–43. DOI: 10.22328/2079-5343-2020-11-4-37-43.

47. Гомболевский В.А., Чернина В.Ю., Блохин И.А., Николаев А.Е., Барчук А.А., Морозов С.П. Основные достижения низкодозной компьютерной томографии в скрининге рака легкого. Туберкулез и болезни легких. 2021;99(1):61–70. DOI: 10.21292/2075-1230-2021-99-1-61-70.

48. Gierada D.S., Bierhals A.J., Choong C.K., Bartel S.T., Ritter J.H., Das N.A. et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad. Radiol. 2010;17(2):146–156. DOI: 10.1016/j.acra.2009.08.007.

49. Cao X., Jin C., Tan T., Guo Y. Optimal threshold in low-dose CT quantification of emphysema. Eur. J. Radiol. 2020;129:109094. DOI: 10.1016/j.ejrad.2020.109094.

50. Jin H., Heo C., Kim J.H. Deep learning-enabled accurate normalization of reconstruction kernel Effects on emphysema quantification in low-dose CT. Phys. Med Biol. 2019;64(13):135010. DOI: 10.1088/1361-6560/ab28a1.

51. Kim H., Goo J.M., Ohno Y., Kauczor H.U., Hoffman E.A., Gee J.C. et al. Effect of reconstruction parameters on the quantitative analysis of chest computed tomography. J. Thorac. Imaging. 2019;34(2):92–102. DOI: 10.1097/RTI.0000000000000389.

52. Nagaraj Y., Wisselink H.J., Rook M., Cai J., Nagaraj S.B., Sidorenkov G. et al. AI-driven model for automatic emphysema detection in low-dose computed tomography using disease-specific augmentation. J. Digit. Imaging. 2022;35(3):538–550. DOI: 10.1007/s10278-022-00599-7.

53. Bak S.H., Kim J.H., Jin H., Kwon S.O., Kim B., Cha Y.K. et al. Emphysema quantification using low-dose computed tomography with deep learning-based kernel conversion comparison. Eur. Radiol. 2020;30(12):6779–6787. DOI: 10.1007/s00330-020-07020-3.

54. Эмфизема легких: Клинические рекомендации. Российское Респираторное общество; 2021. URL: https://spulmo.ru/upload/kr/Emfizema_2021.pdf (13.04.2023).

55. Rea G., De Martino M., Capaccio A., Dolce P., Valente T., Castaldo S. et al. Comparative analysis of density histograms and visual scores in incremental and volumetric high-resolution computed tomography of the chest in idiopathic pulmonary fibrosis patients. Radiol. med. 2021;126(4):599–607. DOI: 10.1007/s11547-020-01307-7.

56. Sukhija A., Mahajan M., Joshi P.C., Dsouza J., Seth N.D.N., Patil K.H. Radiographic findings in COVID-19: Comparison between AI and radiologist. Indian J. Radiol. Imaging. 2021;31(Suppl 1):S87–S93. DOI: 10.4103/ijri.IJRI_777_20.

57. Soyer P., Fishman E.K., Rowe S.P., Patlas M.N., Chassagnon G. Does artificial intelligence surpass the radiologist? Diagnostic and Interventional Imaging. 2022;103(10):445–447. DOI: 10.1016/j.diii.2022.08.001.

58. Colombi D., Bodini F.C., Petrini M., Maffi G., Morelli N., Milanese G. et al. Well-aerated lung on admitting chest CT to predict adverse out-come in COVID-19 Pneumonia. Radiology. 2020;296(2):E86–E96. DOI: 10.1148/radiol.2020201433.

59. Блохин И.А., Соловьев А.В., Владзимирский A.B., Коденко М.Р., Шумская Ю.Ф., Гончар А.П. и др. Автоматический анализ поражения легких при COVID-19: сравнение стандартной и низкодозной компьютерной томографии. Сибирский журнал клинической и экспериментальной медицины. 2022;37(4):114–123. DOI: 10.29001/2073-8552-2022-37-4-114-123.

60. Шатенок М.П., Рыжов С.А., Лантух З.А., Дружинина Ю.В., Толкачев К.В. Возможности программного обеспечения для мониторинга дозовой нагрузки пациентов в лучевой диагностике. Digital Diagnostics. 2022;3(3):212−230. DOI: 10.17816/DD106083.

61. Kodenko M.R., Vasilev Y.A., Vladzymyrskyy A.V., Omelyanskaya O.V., Leonov D.V., Blokhin I.A. et al. Diagnostic accuracy of AI for opportunistic screening of abdominal aortic aneurysm in CT: A systematic review and narrative synthesis. Diagnostics. 2022;12(12):3197. DOI: 10.3390/diagnostics12123197.

62. Sorantin E., Grasser M.G., Hemmelmayr A., Tschauner S., Hrzic F., Weiss V. et al. The augmented radiologist: artificial intelligence in the practice of radiology. Pediatr. Radiol. 2022;52(11):2074–2086. DOI: 10.1007/s00247-021-05177-7.

63. Gangeh M.J., Sørensen L., Shaker S.B., Kamel M.S., de Bruijne M., Loog M. A texton-based approach for the classification of lung parenchyma in CT images. Med. Image Comput. Comput. Assist. Interv. 2010;13(Pt. 3):595–602. DOI: 10.1007/978-3-642-15711-0_74.

64. Soffer S., Ben-Cohen A., Shimon O., Amitai M.M., Greenspan H., Klang E. Convolutional neural networks for radiologic images: A radiologist’s guide. Radiology. 2019;290(3):590–606. DOI: 10.1148/radiol.2018180547.

65. Soffer S., Morgenthau A.S., Shimon O., Barash Y., Konen E., Glicksberg B.S. et al. Artificial intelligence for interstitial lung disease analysis on chest computed tomography: A systematic review. Academic Radiology. 2022;29:S226–S235. DOI: 10.1016/j.acra.2021.05.014.

66. Aggarwal R., Sounderajah V., Martin G., Aggarwal R., Sounderajah V., Martin G. et al. Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digit. Med. 2021;4(1):1–23. DOI: 10.1038/s41746-021-00438-z.


Рецензия

Для цитирования:


Сучилова М.М., Блохин И.А., Коденко М.Р., Решетников Р.В., Николаев А.Е., Омелянская О.В., Владзимирский А.В. Возможности денситометрии в оценке диффузных изменений паренхимы легких (обзор литературы). Сибирский журнал клинической и экспериментальной медицины. 2023;38(3):23-31. https://doi.org/10.29001/2073-8552-2023-39-3-23-31

For citation:


Suchilova M.M., Blokhin I.A., Kodenko M.R., Reshetnikov R.V., Nikolaev A.E., Omelyanskaya O.V., Vladzymyrskyy A.V. Possibilities of densitometry in the assessment of diffuse changes in the lung parenchyma. Siberian Journal of Clinical and Experimental Medicine. 2023;38(3):23-31. (In Russ.) https://doi.org/10.29001/2073-8552-2023-39-3-23-31

Просмотров: 723


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)