Comparative assessment of echocardiographic parameters in persons without diagnosed chronic non-communicable diseases depending on body mass index
https://doi.org/10.29001/2073-8552-2023-39-3-153-162
Abstract
Aim: To compare the indicators of structural remodeling and intracardiac hemodynamics in people without previously diagnosed chronic non-communicable diseases, depending on body mass index (BMI).
Material and Methods. We analyzed the data of 123 people aged 21 to 59 years who did not have chronic non-infectious diseases and did not take any drug therapy that affects the indicators of central and peripheral hemodynamics, as well as lipid, carbohydrate and fat metabolism. All the examined persons were divided depending on the BMI into 2 groups, comparable in sex, but with age differences. The first group consisted of 60 people (75% women) with a BMI < 30 kg/m2, whose median age was 40 years (Q1–Q3: 35–48 years). The second group included 63 subjects (76.1% women) with BMI ≥ 30 kg/m2 at the age of 48.5 years (Q1–Q3: 38–54 years). Structural and functional parameters of the heart were assessed during transthoracic echocardiography, which was performed on the Philips EPIQ CVx 2D ultrasound machine by one specialist.
Results. In the group of persons with increased BMI, the average values of the left ventricular relative wall thickness (RWT LV) were higher – 0.37 [0.34; 0.40] versus 0.41 [0.37; 0.47], p = 0.01; left ventricular mass index (LVMI) – 64.0 [53.0; 76.5] g/m2 and 27.0 [23.1; 30.9] g/m2,7 vs. 82.0 [70.0; 92.0] g/m2 and 38.1 [34.5; 46.5] g/m2,7, p = 0.01; epicardial fat (EF) – 5 [4; 6] mm vs. 8 [5; 10] mm, p = 0.01, left ventricular global longitudinal strain (LV GLS) –21.8 [–23.6…–19.7]% vs. –19.2 [–21.2…–18.2] %, p = 0.01. Statistically direct correlations of BMI with LVMI g/m2,7 (ρ = 0.746; p = 0.01), EF (ρ = 0.563; p = 0.01), LV GLS (ρ = 0.418; p = 0 .01), RWT (ρ = 0.438; p = 0.01). With an increase in BMI by 1 kg/m2, one should expect an increase in the thickness of EF by 0.172 mm, longitudinal deformation of the LV by 0.151%, RWT by 0.003, LVMI, g/m2 by 1.200, LVMI g/m2,7 by 1.116.
Conclusion. The increase in BMI is associated with changes in structural remodeling and systolic function of the LV. In individuals with increased BMI, to determine structural remodeling and changes in the geometry of the heart chambers, it is necessary to use growth indexing, to determine indicators of GLS LV, to determine the thickness of EF in order to detect intracardiac hemodynamic disorders in the early stages and timely prevention of complications.
Keywords
About the Authors
E. A. RogozhkinaRussian Federation
Elizaveta A. Rogozhkina, Research Assistant, Laboratory of Cardioimaging, Autonomic Regulation and Somnology
10, building 3, Petroverigsky per., Moscow, 101990, Russian Federation
O. N. Dzhioeva
Russian Federation
Olga N. Dzhioeva, Dr. Sci. (Med.), Head of the Laboratory of Cardioimaging, Autonomic Regulation and Somnology, Leading Research Scientist; Professor, Department of Therapy and Preventive Medicine of the A.I. Yevdokimov
10, building 3, Petroverigsky per., Moscow, 101990, Russian Federation;
20, p. 1, Delegatskaya str., Moscow, 127473, Russian Federation
R. K. Angarsky
Russian Federation
Ruslan K. Angarsky, Doctor of Ultrasound Diagnostics, Radiology Doctor, Therapist
10, building 3, Petroverigsky per., Moscow, 101990, Russian Federation
A. A. Ivanova
Russian Federation
Anna A. Ivanova, Cardiologist, Junior Research Scientist, Department of Fundamental and Applied Aspects of Obesity
10, building 3, Petroverigsky per., Moscow, 101990, Russian Federation
O. A. Maximova
Russian Federation
Olga A. Maksimova, Research Assistant, Department of Fundamental and Applied Aspects of Obesity
10, building 3, Petroverigsky per., Moscow, 101990, Russian Federation
O. M. Drapkina
Russian Federation
Oksana M. Drapkina, Dr. Sci. (Med.), Professor, Honored Doctor of the Russian Federation, Director of the Federal State Budgetary Institution National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Health of Russia; Academician of the Russian Academy of Sciences; Chief External Specialist in Therapy and General Medical Practice of the Ministry of Health of the Russian Federation
10, building 3, Petroverigsky per., Moscow, 101990, Russian Federation;
20, p. 1, Delegatskaya str., Moscow, 127473, Russian Federation
References
1. Poirier P., Giles T.D., Bray G.A., Hong Y., Stern J.S., Pi-Sunyer F.X. et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler. Thromb. Vasc. Biol. 2006;26(5):968–976. DOI: 10.1161/01.ATV.0000216787.85457.f3.
2. Lavie C.J., Sharma A., Alpert M.A., De Schutter A., Lopez-Jimenez F., Milani R.V. et al. Update on obesity and obesity paradox in heart failure. Prog. Cardiovasc. Dis. 2016;58(4):393–400. DOI: 10.1016/j.pcad.2015.12.003.
3. Rohde L.E., Polanczyk C.A., Goldman L., Cook E.F., Lee R.T., Lee T.H. Usefulness of transthoracic echocardiography as a tool for risk stratification of patients undergoing major noncardiac surgery. Am. J. Cardiol. 2001;87(5):505–509. DOI: 10.1016/s0002-9149(00)01421-1.
4. Voigt J.U., Pedrizzetti G., Lysyansky P., Marwick T.H., Houle H., Baumann R. et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J. Am. Soc. Echocardiogr. 2015;28(2):183–193. DOI: 10.1016/j.echo.2014.11.003.
5. Nauta J.F., Jin X., Hummel Y.M., Voors A.A. Markers of left ventricular systolic dysfunction when left ventricular ejection fraction is normal. Eur. J. Heart Fail. 2018;20(12):1636–1638. DOI: 10.1002/26.ejhf.1326.
6. Mele D., Nardozza M., Ferrari R. Left ventricular ejection fraction and heart failure: an indissoluble marriage? Eur. J. Heart Fail. 2018;20(3):427–430. DOI: 10.1002/ejhf.1071.
7. Oh J.K., Park J.-H. Role of strain echocardiography in patients wuth hypertension. Clin. Hypertens. 2022;28(1):6. DOI: 10.1186/s40885-021-00186-y.
8. Steele J.M., Urbina E.M., Mazur W.M., Khoury P.R., Nagueh S.F., Tretter J.T. et al. Left atrial strain and diastolic function abnormalities in obese and type 2 diabetic adolescents and young adults. Cardiovasc. Diabetol. 2020;19(1):163. DOI: 10.1186/s12933-020-01139-9.
9. Nagarajarao H.S., Penman A.D., Taylor H.A., Mosley T.H., Butler K., Skelton T.N. et al. The predictive value of left atrial size for incident ischemic stroke and all-cause mortality in African Americans: the Atherosclerosis Risk in Communities (ARIC) Study. Stroke. 2008;39(10):2701–2706. DOI: 10.1161/STROKEAHA.108.515221.
10. Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F., Dokainish H., Edvardsen T. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging. 2016;17(12):1321–1360. DOI: 10.1016/j.echo.2016.01.011.
11. Ye Z., Miranda W.R., Yeung D.F., Kane G.C., Oh J.K.. Left Atrial Strain in Evaluation of Heart Failure with Preserved Ejection Fraction. J. Am. Soc. Echocardiogr. 2020;33(12):1490–1499. DOI: 10.1016/j.echo.2020.07.020.
12. Hoit B.D. Left atrial size and function: role in prognosis. J. Am. Coll. Cardiol. 2014;63(6):493–505. DOI: 10.1016/j.jacc.2013.10.055.
13. Singh M., Sethi A., Mishra A.K., Subrayappa N.K., Stapleton D.D., Pellikka P.A. Echocardiographic imaging challenges in obesity: Guideline recommendations and limitations of adjusting to body size. J. Am. Heart Assoc. 2020;9(2):e014609. DOI: 10.1161/JAHA.119.014609.
14. Aurigemma G.P., de Simone G., Fitzgibbons T.P. Cardiac remodeling in obesity. Circ. Cardiovasc. Imaging. 2013;6(1):142–152. DOI: 10.1161/CIRCIMAGING.111.964627.
15. Aga Y.S., Kroon D., Snelder S.M. Biter L.U., de Groot-de Laat L.E., Zijlstra F. et al. Decreased left atrial function in obesity patients without known cardiovascular disease. Int. J. Cardiovasc. Imaging. 2023;39(3):471–479. DOI: 10.1007/s10554-022-02744-3.
16. Wong C.Y., O’Moore-Sullivan T., Leano R., Byrne N., Beller E., Marwick T.H. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004;110(19):3081–3087. DOI: 10.1161/01.CIR.0000147184.13872.0F.
17. Blomstrand P., Sjöblom P., Nilsson M., Wijkman M., Engvall M., Länne T. et al. Overweight and obesity impair left ventricular systolic function as measured by left ventricular ejection fraction and global longitudinal strain. Cardiovasc. Diabetol. 2018;17(1):113. DOI: 10.1186/s12933-018-0756-2.
18. Karason K., Wallentin I., Larsson B., Sjöström L. Effects of obesity and weight loss on left ventricular mass and relative wall thickness: survey and intervention study. BMJ. 1997;315(7113):912–916. DOI: 10.1136/bmj.315.7113.912.
19. Chirinos J.A., Sardana M., Satija V., Gillebert T.C, De Buyzere M.L., Chahwala J. et al. Effect of obesity on left atrial strain in persons aged 35–55 years (The Asklepios Study). Am. J. Cardiol. 2019;123(5):854–861. DOI: 10.1016/j.amjcard.2018.11.035.
20. Aitken-Buck H.M., Moharram M., Babakr A.A., Reijers R., Van Hout I., Fomison-Nurse I.C. et al. Relationship between epicardial adipose tissue thickness and epicardial adipocyte size with increasing body mass index. Adipocyte. 2019;8(1):412–420. DOI: 10.1080/21623945.2019.1701387.
Review
For citations:
Rogozhkina E.A., Dzhioeva O.N., Angarsky R.K., Ivanova A.A., Maximova O.A., Drapkina O.M. Comparative assessment of echocardiographic parameters in persons without diagnosed chronic non-communicable diseases depending on body mass index. Siberian Journal of Clinical and Experimental Medicine. 2023;38(3):153-162. (In Russ.) https://doi.org/10.29001/2073-8552-2023-39-3-153-162