Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Pediatric heart physiology and pathogenetic mechanisms affecting the process of growth and development of the cardiovascular system premature infants: a modern view at the problem

https://doi.org/10.29001/2073-8552-2024-39-4-26-37

Abstract

Aim: To study the state of cardiac tissue homeostasis in the process of ontogenesis in prematurity in the light of modern fundamental knowledge on the biology of cardiac stem cells, the structure of cardiomyocytes, paracrine regulation mechanisms and other pathogenetic mechanisms affecting the growth, development and remodeling of the cardiovascular system in childhood and in follow-up.

Literature search strategy. A search for studies and analytical literature reviews was conducted in databases Cochrane library, MEDLINE, Google Academy, PubMed and other databases mainly from the beginning of 2018 to December 2023. Publications/ studies reflecting various aspects of the physiology of the infant heart in premature infants (clinical and experimental aspects) were independently selected for inclusion. Preference was given to randomized controlled trials.

Results. Based on modern concepts of pre- and post-implantation (postnatal) development and growth of the infant heart, the analysis of the processes of postnatal growth and development of the heart of children born healthy full-term and premature with spontaneous natural conception is given. The analysis of the main pathogenetic mechanisms influencing the processes of growth and development of the child’s heart in the intrauterine and postnatal period is carried out.

Conclusion. Experimental and clinical data reasonably require a conscious revision of the fundamental theoretical postulates about the regenerative capabilities of the myocardium in various periods of childhood, including the clinical group of premature babies, and practical guidelines for pregnancy management with the threat of abortion and infertility (preimplantation measures using assisted reproductive technologies), combined/intensive (including, respiratory) therapy in the neonatal period, longterm outpatient follow-up of children and adults born prematurely with low, very low and extremely low body weight in order to prevent, screen and treat potential effects on the health of the cardiovascular system throughout life. The information provided is very useful for a wide range of readers – biologists, embryologists, reproductive doctors, obstetricians, gynecologists, neonatologists, pediatricians, internists, cardiologists, surgeons.

About the Authors

E. N. Pavlyukova
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Elena N. Pavlyukova, Dr. Sci. (Med.), Professor, Head of the Department of Atherosclerosis and Chronic Coronary Heart Disease,

111a, Kievskaya str., Tomsk, 634012



M. V. Kolosova
Siberian State Medical University of the Ministry of Health of the Russian Federation (SSMU)
Russian Federation

Marina V. Kolosova, Dr. Sci. (Med.), Professor, Department of Children’s Diseases, 

2, Moskovskiy tract, Tomsk, 634050



G. V. Neklyudova
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Galina V. Neklyudova, Graduate Student, 

111a, Kievskaya str., Tomsk, 634012



E. O. Alekseeva
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)

Evgeniya O. Alekseeva, Graduate Student,

111a, Kievskaya str., Tomsk, 634012



R. S. Karpov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Rostislav S. Karpov, Dr. Sci. (Med.), Academician of the Russian Academy of Sciences, Scientific Supervisor, 

111a, Kievskaya str., Tomsk, 634012



References

1. Huckstep O.J., Williamson W., Telles F., Burchert H., Bertagnolli M., Herdman C. et al. Physiological stress elicits impaired left ventricular function in preterm-born adults. J. Am. Coll. Cardiol. 2018;71(12):1347– 1356. DOI: 10.1016/j.jacc.2018.01.046.

2. Crump C., Howell E.A., Stroustrup A., McLaughlin M.A., Sundquist J., Sundquist K. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA pediatrics. 2019;173(8):736–743. DOI: 10.1001/jamapediatrics.2019.1327.

3. Crump C., Sundquist J., Winkleby M. A., Sundquist K. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study. Lancet Child Adolesc. Health. 2019;3(6):408–417. DOI: 10.1016/ S2352-4642(19)30108-7.

4. Lewandowski A.J. Cardiac remodeling in preterm-born adults: Longterm benefits of human milk consumption in preterm neonates. Breastfeeding Med. 2018;13(S1):S3–S4. DOI: 10.1089/bfm.2018.29071.ajl.

5. Vrselja A., Pillow J.J., Black M.J. Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. J. Clin. Med. 2021;10(17):3896. DOI: 10.3390/jcm10173896.

6. Popescu L.M., Curici A., Wang E., Zhang H., Hu S., Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J. Cell. Mol. Med. 2015;19(1):31–45. DOI: 10.1111/jcmm.12509.

7. Vukusic K., Sandstedt M., Jonsson M., Jansson M., Oldfors A., Jeppsson A., Dellgren G., Lindahl A., Sandstedt J. The atrioventricular junction: A potential niche region for progenitor cells in the adult human heart. Stem Cells Dev. 2019;28(16):1078–1088. DOI:10.1089/scd.2019.0075.

8. Herrero D., Albericio G., Higuera M., Herranz-López M., GarcíaBrenes M.A., Cordero A. et al. The vascular niche for adult cardiac progenitor cells. Antioxidants (Basel). 2022;11(5):882. DOI: 10.3390/antiox11050882.

9. Jonker S.S., Louey S., Giraud G.D., Thornburg K.L, Faber J.J. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J. 2015;29(10):4346–4357. DOI: 10.1096/fj.15-272013.

10. Günthel M., Barnett P., Christoffels V.M. Development, proliferation, and growth of the mammalian heart. Mol. Ther. 2018;26(7):1599–1609. DOI: 10.1016/j.ymthe.2018.05.022.

11. Ellison G.M., Torella D., Karakikes I., Nadal-Ginard B. Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nat. Clin. Pract. Cardiovasc. Med. 2007;4(Suppl. 1):S52–S59. DOI: 10.1038/ncpcardio0773.

12. Payan S.M., Hubert F., Rochais F. Cardiomyocyte proliferation, a target for cardiac regeneration. Biochim. Biophys. Acta Mol. Cell Res. 2020;1867(3):118461. DOI: 1016/j.bbamcr.2019.03.008.

13. Mollova M., Bersell K., Walsh S., Savla J., Das L.T., Park S.Y. et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc. Natl. Acad. Sci. USA. 2013;110(4):1446–1451. DOI: 10.1073/pnas.1214608110.

14. Lázár E., Sadek H. A., Bergmann O. Cardiomyocyte renewal in the human heart: insights from the fall-out. Eur. Heart J. 2017;38(30):2333– 2342. DOI: 10.1093/eurheartj/ehx343.

15. Tang Y., Nyengaard J.R., Andersen J.B., Baandrup U., Gundersen H.J.G. The application of stereological methods for estimating structural parameters in the human heart. Anat. Rec. (Hoboken). 2009;292(10):1630– 1647. DOI: 10.1002/ar.20952.

16. Eschenhagen T., Bolli R., Braun T., Field L.J., Fleischmann B.K., Frisén J. et al. Cardiomyocyte regeneration: A consensus statement. Circulation. 2017;136(7):680–686. DOI: 10.1161/CIRCULATIONAHA.117.029343.

17. Gong H., Wang T., Xu Q. Resident stem cells in the heart. Med. Rev. 2021;1(1):10–13. DOI: 10.1515/mr-2021-0003.

18. Velichko V., Nemkov A., Belostotskaya G., Kriventsov A., Komok V., Bunenkov N. et al. Study of heart stem cells in cardiac surgery patients of different ages. Aorta. 2022;10(S1):A066. DOI: 10.1055/s-0042-1750975.

19. Belostotskaya G., Sonin D., Galagudza M. Intracellular development of resident cardiac stem cells: An overlooked phenomenon in myocardial self-renewal and regeneration. Life. 2021;11(8):723. DOI: 10.3390/life11080723.

20. Belostotskaya G., Hendrikx M., Galagudza M., Suchkov S. How to stimulate myocardial regeneration in adult mammalian heart: Existing views and new approaches. biomed research international. 2020;2020:7874109. DOI: 10.1155/2020/7874109.

21. Leri A., Kajstura J., Anversa P. Role of cardiac stem cells in cardiac pathophysiology: A paradigm shift in human myocardial biology. Circ. Res. 2011;109(8):941–961. DOI: 10.1161/CIRCRESAHA.111.243154.

22. Olivetti G., Abbi R., Quaini F., Kajstura J., Cheng W., Nitahara J.A. et al. Apoptosis in the failing human heart. New Engl. J. Med. 1997;336(16):1131–1141. DOI: 10.1056 /NEJM199704173361603.

23. Kajstura J., Gurusamy N., Ogórek B., Goichberg P., Clavo-Rondon C., Hosoda T. et al. Myocyte turnover in the aging human heartnovelty and significance. Circ. Res. 2010;107(11):1374–1386. DOI: 10.1161/CIRCRESAHA.110.231498.

24. Omland T., De Lemos J.A., Sabatine M.S., Christophi C.A., Rice M.M., Jablonski K.A. et al. Prevention of events with Angiotensin Converting Enzyme Inhibition (PEACE) trial investigators. A sensitive cardiac troponin T assay in stable coronary artery disease. N. Engl. J. Med. 2009;361(26):2538–2547. DOI: 10.1056 /NEJMoa0805299.

25. Del Re D. P., Amgalan D., Linkermann A., Liu Q., Kitsis R.N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev. 2019;99(4):1765. DOI: 10.1152/physrev.00022.2018.

26. Anversa P., Kajstura J., Rota M., Leri A. Regenerating new heart with stem cells. J. Clin. Invest. 2013;123(1):62–70. DOI: 10.1172/JCI63068.

27. Sedmera D., Thompson R.P. Myocyte proliferation in the developing heart. Dev. Dyn. 2011;240(6):1322–1334. DOI: 10.1002/dvdy.22650.

28. Porrello E.R., Olson E.N. A neonatal blueprint for cardiac regeneration. Stem Cell Res. 2014;13(3):556–570. DOI: 10.1016/j.scr.2014.06.003.

29. Senyo S.E., Steinhauser M.L., Pizzimenti C.L., Yang V.K., Cai L., Wang M. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 2013;493(7432):433–436. DOI: 10.1038/nature11682.

30. Bergmann O., Bhardwaj R.D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S. et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102. DOI: 10.1126/science.1164680.

31. Bruyneel A.A., Sehgal A., Malandraki-Miller S., Carr C. Stem cell therapy for the heart: blind alley or magic bullet? J. Cardiovasc. Transl. Res. 2016;9(5–6):405–418. DOI: 10.1007/s12265-016-9708-y.

32. Vagnozzi R.J., Molkentin J.D., Houser S.R. New myocyte formation in the adult heart: endogenous sources and therapeutic implications. Circ. Res. 2018;123 (2):159–176. DOI: 10.1161/CIRCRESAHA.118.311208.


Supplementary files

Review

For citations:


Pavlyukova E.N., Kolosova M.V., Neklyudova G.V., Alekseeva E.O., Karpov R.S. Pediatric heart physiology and pathogenetic mechanisms affecting the process of growth and development of the cardiovascular system premature infants: a modern view at the problem. Siberian Journal of Clinical and Experimental Medicine. 2024;39(4):26-37. (In Russ.) https://doi.org/10.29001/2073-8552-2024-39-4-26-37

Views: 292


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)