С-JUN N-TERMINAL KINASES AND THEIR MODULATORS IN MYOCARDIAL ISCHEMIA/REPERFUSION INJURY (REVIEW)
https://doi.org/10.29001/2073-8552-2016-31-3-7-15
Abstract
About the Authors
M. V. ShvedovaRussian Federation
Tomsk
Y. Anfinogenova
Russian Federation
Tomsk
S. V. Popov
Russian Federation
I. A. Shchepetkin
Russian Federation
Tomsk;
Bozeman, Montana, USA
D. N. Atochin
Russian Federation
Tomsk;
Charlestown, Massachusetts, USA
References
1. Влаопулос С., Зумпурлис В.С. JNK: ключевой модулятор внутриклеточной сигнальной системы // Биохимия. – 2004. – № 69(8). – С. 1038–1050.
2. Зюзьков Г.Н., Жданов В.В., Удут Е.В. и др. Роль JNK и участие p53 в реализации ростового потенциала мезенхимных клеток предшественников в условиях in vitro // Бюллетень экспериментальной биологии и медицины. – 2015. – № 159(2). – С. 205–208.
3. Маслов Л.Н., Мрочек А.Г., Щепёткин И.А. и др. Роль протеинкиназ в формировании адаптивного феномена ишемического посткондиционирования сердца // Рос. физиологический журнал им. И.М. Сеченова. – 2013. – № 99(4). – С. 433–452.
4. Рязанцева Н.В., Новицкий В.В., Часовских Н.Ю. и др. Роль редокс зависимых сигнальных систем в регуляции апоптоза при окислительном стрессе // Цитология. – 2009. – № 51(4). – С. 329–334.
5. Aoki H., Kang P.M., Hampe J. et al. Direct activation of mitochondrial apoptosis machinery by c Jun N terminal kinase in adult cardiac myocytes // J. Biol. Chem. – 2002. – Vol. 277(12). – P. 10244–10250.
6. Armstrong S.C. Protein kinase activation and myocardial ischemia/reperfusion injury // Cardiovasc. Res. – 2004. – Vol. 61(3). – P. 427–436.
7. Arslan F., Lai R.C., Smeets M.B. et al. Mesenchymal stem cell derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/ reperfusion injury // Stem Cell Res. – 2013. – Vol. 10(3). – P. 301–312.
8. Atochin D.N., Schepetkin I.A., Khlebnikov A.I. et al. A novel dual NO donating oxime and c Jun N terminal kinase inhibitor protects against cerebral ischemia reperfusion injury in mice // Neurosci. Lett. – 2016. – Vol. 618. – P. 45–49.
9. Barancik M., Htun P., Schaper W. Okadaic acid and anisomycin are protective and stimulate the SAPK/JNK pathway // J. Cardiovasc. Pharmacol. – 1999. – Vol. 34(2). – P. 182–190.
10. Becatti M., Taddei N., Cecchi C. et al. SIRT1 modulates MAPK pathways in ischemic reperfused cardiomyocytes // Cell. Mol. Life Sci. – 2012. – Vol. 69(13). – P. 2245–2260.
11. Bode A.M., Dong Z. The functional contrariety of JNK // Mol. Carcinog. – 2007. – Vol. 46(8). – P. 591–598.
12. Bogoyevitch M.A., Kobe B. Uses for JNK: the many and varied substrates of the c-Jun-N-terminal kinases // Microbiol. Mol. Biol. Rev. – 2006. – Vol. 70(4). – P. 1061–1095.
13. Chambers J.W., Pachori A., Howard S. et al. Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats // J. Biol. Chem. – 2013. – Vol. 288(6). – P. 4000–4011.
14. Chaudhury H., Zakkar M., Boyle J. et al. C-Jun-N terminal kinase primes endothelial cells at atheroprone sites for apoptosis // Arterioscler. Thromb. Vasc. Biol. – 2010. – Vol. 30(3). – P. 546–553.
15. Chen Y.C., Jinn T.R., Chung T.Y. et al. Magnesium lithospermate B extracted from Salvia miltiorrhiza elevates intracellular Ca2+ level in SH SY5Y cells // Acta Pharmacol. Sin. – 2010. – Vol. 31(8). – P. 923–929.
16. Clerk A., Fuller S.J., Michael A. et al. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun-N-terminal kinases and p38 mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses // J. Biol. Chem. – 1998. – Vol. 273(13). – P. 7228–7234.
17. Dougherty C.J., Kubasiak L.A., Frazier D.P. et al. Mitochondrial signals initiate the activation of c Jun N terminal kinase (JNK) by hypoxia-reoxygenation // FASEB J. – 2004. – Vol. 18(10). – P. 1060–1070.
18. Dougherty C.J., Kubasiak L.A., Prentice H. et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress // Biochem. J. – 2002. – Vol. 362 (Pt. 3). – P. 561–571.
19. Duplain H. Salvage of ischemic myocardium: a focus on JNK // Adv. Exp. Med. Biol. – 2006. – Vol. 588. – P. 157–164.
20. Engelbrecht A.M., Niesler C., Page C. et al. P38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes // Basic Res. Cardiol. – 2004. – Vol. 99(5). – P. 338–350.
21. Ferrandi C., Ballerio R., Gaillard P. et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats // Br. J. Pharmacol. – 2004. – Vol. 142(6). – P. 953–960.
22. Frazier D.P., Wilson A., Dougherty C.J. et al. PKC alpha and TAK-1 are intermediates in the activation of c-Jun NH2 terminal kinase by hypoxia reoxygenation // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1675–1684.
23. Fryer R.M., Patel H.H., Hsu A.K. et al. Stress activated protein-kinase phosphorylation during cardioprotection in the ischemic myocardium // Am. J. Physiol. Heart. Circ. Physiol. – 2001. – Vol. 281(3). – P. H1184–1192.
24. Gehringer M., Muth F., Koch P., Laufer S.A. c-Jun N-terminal kinase inhibitors: a patent review (2010–2014) // Expert Opin. Ther. Pat. – 2015. – Vol. 25(8). – P. 849–872.
25. Gupta S., Barrett T., Whitmarsh A.J. et al. Selective interaction of JNK protein kinase isoforms with transcription factors // The EMBO Journal. – 1996. – Vol. 15(11). – P. 2760–2770.
26. Hausenloy D.J., Yellon D.M. Survival kinases in ischemic preconditioning and postconditioning // Cardiovasc. Res. – 2006. – Vol. 70(2). – P. 240–253.
27. Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: united at reperfusion // Pharmacol. Ther. – 2007. – Vol. 116(2). – P. 173–191.
28. He H., Li H.L., Lin A. et al. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia // Cell Death Differ. – 1999. – Vol. 6(10). – P. 987–991.
29. Hreniuk D., Garay M., Gaarde W. et al. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes // Mol. Pharmacol. – 2001. – Vol. 59(4). — P. 867–874.
30. Ip Y.T., Davis R.J. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development // Curr. Opin. Cell Biol. – 1998. – Vol. 10(2). – P. 205–219.
31. Irving E.A., Bamford M. Role of mitogen and stress-activated kinases in ischemic injury // J. Cereb. Blood Flow Metab. – 2002. – Vol. 22(6). – P. 631–647.
32. Jang S., Javadov S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK // PLoS One. – 2014. – Vol. 9(11). – P. e113526.
33. Javadov S., Jang S., Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives // Pharmacol. Ther. – 2014. – Vol. 144(2). – P. 202–225.
34. Johnson G.L., Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease // Biochim. Biophys. Acta. – 2007. – Vol. 1773(8). – P. 1341–1348.
35. Kaiser R.A., Liang Q., Bueno O. et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia–reperfusion induced cell death in vivo // J. Biol. Chem. – 2005. – Vol. 280(38). – P. 32602–32608.
36. Khalid S., Drasche A., Thurner M. et al. c-Jun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation // Sci. Rep. – 2016. – Vol. 6. – P. 20930.
37. Khandoudi N., Delerive P., Berrebi-Bertrand I. et al. Rosiglitazone, a peroxisome proliferator activated receptor-gamma, inhibits the Jun NH(2) terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury // Diabetes. – 2002. – Vol. 51(5). – P. 1507–1514.
38. Knight R.J., Buxton D.B. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart // Biochem. Biophys. Res. Commun. – 1996. – Vol. 218(1). – P. 83–88.
39. Laderoute K.R., Webster K.A. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes // Circ. Res. – 1997. – Vol. 80(3). – P. 336–344.
40. Li H.H., Du J., Fan Y.N. et al. The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho c-Jun // Am. J. Pathol. – 2011. – Vol. 178(3). – P. 1043–1058.
41. Li C., Gao Y., Tian J. et al. Sophocarpine administration preserves myocardial function from ischemia reperfusion in rats via NF-кB inactivation // J. Ethnopharmacol. – 2011. – Vol. 135(3). – P. 620–625.
42. Li X.M., Ma Y.T., Yang Y.N. et al. Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling pathway: experiment with mice // Zhonghua Yi Xue Za Zhi. – 2009. – Vol. 89(12). – P. 846–850.
43. Li C., Wang T., Zhang C. et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen activated protein kinase signaling pathways // Gene. – 2016. – Vol. 577(2). – P. 275–280.
44. Liu Q., Wang J., Liang Q. et al. Sparstolonin B attenuates hypoxia-reoxygenation induced cardiomyocyte inflammation // Exp. Biol. Med. (Maywood). – 2014. – Vol. 239(3). – P. 376–384.
45. Liu X., Xu F., Fu Y. et al. Calreticulin induces delayed cardioprotection through mitogen
46. activated protein kinases // Proteomics. – 2006. – Vol. 6(13). – P. 3792–3800.
47. Liu H.T., Zhang H.F., Si R. et al. Insulin protects isolated hearts from ischemia/reperfusion injury: cross talk between PI3-K/Akt and JNKs // Acta Physiol. Sin. – 2007. – Vol. 59(5). – P. 651–659.
48. Liu X.H., Zhang Z.Y., Sun S. et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress // Shock. – 2008. – Vol. 30(4). – P. 422–427.
49. Messoussi A., Feneyrolles C., Bros A. et al. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents // Chem. Biol. – 2014. – Vol. 21(11). – P. 1433–1443.
50. Milano G., Morel S., Bonny C. et al. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia reperfusion injury and infarct size in vivo // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1828–1835.
51. Morrison A., Yan X., Tong C. et al. Acute rosiglitazone treatment is cardioprotective against ischemia reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 301(3). – P. H895–902.
52. Nakano A., Baines C.P., Kim S.O. et al. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK // Circ. Res. – 2000. – Vol. 86(2). – P. 144–151.
53. Nijboer C.H., van der Kooij M.A., van Bel F. et al. Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic ischemic brain injury // Brain Behav. Immun. – 2010. – Vol. 24(5). – P. 812– 821.
54. Oshikawa J., Kim S.J., Furuta E. et al. Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells // Am. J. Physiol. Heart Circ. Physiol. – 2012. – Vol. 302(3). – P. H724–732.
55. Ping P., Zhang J., Huang S. et al. PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits // Am. J. Physiol. – 1999. – Vol. 277(5 Pt. 2). – P. H1771–1785.
56. Qi D., Hu X., Wu X. et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion // J. Clin. Invest. – 2009. – Vol. 119(12). – P. 3807–3816.
57. Rose B.A., Force T., Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale // Physiol. Rev. – 2010. – Vol. 90(4). – P. 1507–1546.
58. Sato M., Bagchi D., Tosaki A. et al. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion induced activation of JNK-1 and C-JUN // Free Radic. Biol. Med. – 2001. – Vol. 31(6). – P. 729–737.
59. Shang L., Ananthakrishnan R., Li Q. et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways // PLoS One. – 2010. – Vol. 5(4). – P. e10092.
60. Shao Z., Bhattacharya K., Hsich E. et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo // Circ. Res. – 2006. – Vol. 98(1). – P. 111–118.
61. Shi S., Li Q.S., Li H. et al. Anti-apoptotic action of hydrogen sulfide is associated with early JNK inhibition // Cell Biol. Int. – 2009. – Vol. 33(10). – P. 1095–1101.
62. Song Z.F., Ji X.P., Li X.X. et al. Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation // Cell Mol. Med. – 2008. – Vol. 12(4). – P. 1220–1228.
63. Sun L., Isaak C.K., Zhou Y. et al. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion induced-apoptosis // Life Sci. – 2012. – Vol. 91(5–6). – P. 151–158.
64. Sun H.Y., Wang N.P., Halkos M. et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways // Apoptosis. – 2006. – Vol. 11(9). – P. 1583–1593.
65. Talmor D., Applebaum A., Rudich A. et al. Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass // Circ. Res. – 2000. – Vol. 86(9). – P. 1004–1007.
66. Vassalli G., Milano G., Moccetti T. Role of Mitogen-Activated Protein Kinases in myocardial ischemia reperfusion injury during heart transplantation // J. Transplant. – 2012. – Vol. 2012. – P. 928954.
67. Waetzig V., Herdegen T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage // Trends Pharmacol. Sci. – 2005. – Vol. 26(9). – P. 455–461.
68. Walshe C.M., Laffey J.G., Kevin L. et al. Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK dependent mechanism // Intensive Care Med. Exp. – 2015. – Vol. 3(1). – P. 35.
69. Wang Z., Huang H., He W. et al. Regulator of G-protein signaling 5 protects cardiomyocytes against apoptosis during in vitro cardiac ischemia-reperfusion in mice by inhibiting both JNK and P38 signaling pathways [Electronic resource] // Biochem. Biophys. Res. Commun. – 2016. – Vol. 473(2). – P. 551–557.
70. Wang J., Yang L., Rezaie A.R. et al. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling // J. Thromb. Haemost. – 2011. – Vol. 9(7). – P. 1308–1317.
71. Wei J., Wang W., Chopra I. et al. C-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction // J. Biol. Chem. – 2011. – Vol. 286(16). – P. 13995–14006.
72. Wei C., Zhao Y., Wang L. et al. H2S restores the cardioprotection from ischemic post-conditioning in isolated aged rat hearts // Cell Biol. Int. – 2015. – Vol. 39(10). – P. 1173–1176.
73. Wiltshire C., Gillespie D.A., May G.H. Sab (SH3BP5), a novel mitochondria-localized JNK interacting protein // Biochem. Soc. Trans. – 2004. – Vol. 32 (Pt. 6). – P. 1075–1077.
74. Wu J., Li J., Zhang N. et al. Stem cell-based therapies in ischemic-heart diseases: a focus on aspects of microcirculation and inflammation // Basic Res. Cardiol. – 2011. – Vol. 106(3). – P. 317–324.
75. Xie P., Guo S., Fan Y. et al. Atrogin-1/MAFbx enhances simulated ischemia/reperfusion induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK-activation // J. Biol. Chem. – 2009. – Vol. 284(9). – P. 5488–5496.
76. Xu J., Qin X., Cai X. et al. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury-following ischemia/reperfusion // Biochim. Biophys. Acta. – 2015. – Vol. 1852(2). – P. 262–270.
77. Xu T., Wu X., Chen Q. et al. The anti-apoptotic and cardioprotective effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway // PLoS One. – 2014. – Vol. 9(7). – P. e102292.
78. Xu H., Yao Y., Su Z. et al. Endogenous HMGB1 contributes to ischemia reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-alpha/JNK // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 300(3). – P. H913–921.
79. Yang L.M., Xiao Y.L., Ou Yang J.H. Inhibition of magnesium lithospermate B on the c-Jun N-terminal kinase 3 mRNA-expression in cardiomyocytes encountered ischemia/reperfusion injury // Acta Pharmacol. Sin. – 2003. – Vol. 38(7). – P. 487–491.
80. Yin T., Sandhu G., Wolfgang C.D. et al. Tissue specific pattern of stress kinase activation in ischemic/reperfused heart and kidney // J. Biol. Chem. – 1997. – Vol. 272(32). – P. 19943–19950.
81. Yue T.L., Wang C., Gu J.L. et al. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart // Circ. Res. – 2000. – Vol. 86(6). – P. 692–699.
82. Zaha V.G., Qi D., Su K.N. et al. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia // J. Mol. Cell. Cardiol. – 2016. – Vol. 91. – P. 104–113.
83. Zhang J., Li X.X., Bian H.J. et al. Inhibition of the activity of Rho-kinase reduces cardiomyocyte apoptosis in heart ischemia/reperfusion via suppressing JNK-mediated AIF translocation // Clin. Chim. Acta. – 2009. – Vol. 401(1–2). – P. 76–80.
84. Zhang G.M., Wang Y., Li T.D. et al. Change of JNK MAPK and its influence on cardiocyte apoptosis in ischemic postconditioning // J. Zhejiang Univ. – 2009. – Vol. 38(6). – P. 611–619.
85. Zhang G.M., Wang Y., Li T.D. et al. Post conditioning with gradually increased reperfusion provides better cardioprotection in rats // World J. Emerg. Med. – 2014. – Vol. 5(2). – P. 128–134.
86. Zinkel S., Gross A., Yang E. BCL2 family in DNA damage and cell cycle control // Cell Death Differ. – 2006. – Vol. 13(8). – P. 1351–1359.
Review
For citations:
Shvedova M.V., Anfinogenova Y., Popov S.V., Shchepetkin I.A., Atochin D.N. С-JUN N-TERMINAL KINASES AND THEIR MODULATORS IN MYOCARDIAL ISCHEMIA/REPERFUSION INJURY (REVIEW). Siberian Journal of Clinical and Experimental Medicine. 2016;31(3):7-15. (In Russ.) https://doi.org/10.29001/2073-8552-2016-31-3-7-15