Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Comprehensive assessment of subchronic low-dose exposure to doxorubicin in the Wistar rat model

https://doi.org/10.29001/2073-8552-2024-39-4-171-179

Abstract

Rationale. Doxorubicin is a chemotherapeutic antibiotic from the anthracycline class that has cumulative and dose-dependent cardiotoxic effects. The cardiotoxic properties of doxorubicin are manifested in characteristic pathologies of the heart and its microenvironment. Doxorubicin also exhibits genotoxic properties and is often used to model acute genotoxic effects in small laboratory animal models.

Aim: To evaluate chronic low-dose exposure to doxorubicin in a Wistar rat model using cytogenetic methods and electron microscopy.

Material and Methods. The study included two groups of 10 male Wistar rats: an experimental group (weekly doxorubicin in the tail vein 2 mg/kg for 4 weeks) and a control group (0.9% NaCl). A micronucleus test was used to evaluate genotoxic effects. Visualization of the myocardial structure was carried out using scanning electron microscopy in back-scattered electrons on an electron microscope.

Results. The analysis showed a significant difference between the control (0.8%) and experimental groups (3.2%) in the level of polychrome erythrocytes with a micronucleus. It was found that rats from the experimental group were characterized by a significant decrease in the number of polychromatic red blood cells compared to the control group. In the experimental group, pronounced heterogeneity of the morphological structure of the myocardium was noted. Electron micrographs of hepatocytes from rats treated with doxorubicin showed degenerative changes in the structure of liver cells.

Conclusion. The results of our study provide insight into the subacute effect of a small dose of doxorubicin on the heart, liver and hematopoietic system of normolipidemic Wistar rats. We have proposed mechanisms of interaction between important organs and systems of the body exposed to doxorubicin against the background of a general pathological condition. In the future, the nature of the toxic effects of lower and optimal doses of the mutagen in the context of subchronic cumulative exposure should be determined.

About the Authors

M. A. Asanov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Maxim A. Asanov, Junior Research Scientist, Laboratory of Genomic Medicine, 

650002, Kemerovo, Academician Barbarash boulevard, 6



A. O. Poddubnyak
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Alena O. Poddubnyak, Research Assistant, Laboratory of Genomic Medicine, 

650002, Kemerovo, Academician Barbarash boulevard, 6



R. A. Muhamadiyarov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Rinat A. Mukhamadiyarov, Cand. Sci. (Biol.), Senior Research Scientist, Laboratory of Molecular, Translational and Digital Medicine, 

650002, Kemerovo, Academician Barbarash boulevard, 6



A. V. Sinitskaya
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Anna V. Sinitskaya, Cand. Sci. (Biol.), Research Scientist, Laboratory of Genomic Medicine, 

650002, Kemerovo, Academician Barbarash boulevard, 6



M. V. Khutornaya
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Mariya V. Khutornaya, Junior Research Scientist, Laboratory of Genomic Medicine, 

650002, Kemerovo, Academician Barbarash boulevard, 6



M. Yu. Sinitsky
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Maxim Yu. Sinitsky, Cand. Sci. (Biol.), Head of Laboratory of Genomic Medicine, 

650002, Kemerovo, Academician Barbarash boulevard, 6



References

1. Argun M., Üzüm K., Sönmez M.F., Özyurt A., Derya K., Çilenk K.T. et al. Cardioprotective effect of metformin against doxorubicin cardiotoxicity in rats. Anatol. J. Cardiol. 2016;16(4):234. DOI: 10.5152/akd.2015.6185.

2. Guo R., Hua Y., Ren J., Bornfeldt K.E., Nair S. Cardiomyocyte-specific disruption of Cathepsin K protects against doxorubicin-induced cardiotoxicity. Cell Death Dis. 2018;9(6):692. DOI: 10.1038/s41419-018-0727-2.

3. Anghel N., Herman H., Balta C., Rosu M., Stan M.S., Nita D. et al. Acute cardiotoxicity induced by doxorubicin in right ventricle is associated with increase of oxidative stress and apoptosis in rats. Histol. Histopathol. 2018;33(4):365. DOI: 10.14670/hh-11-932.

4. Yu Q., Li Q., Na R., Li X., Liu B., Meng L. et al. Impact of repeated intravenous bone marrow mesenchymal stem cells infusion on myocardial collagen network remodeling in a rat model of doxorubicin-induced dilated cardiomyopathy. Mol. Cell Biochem. 2014;387(1–2):279–285. DOI: 10.1007/s11010-013-1894-1.

5. Hajra S., Patra A.R., Basu A., Bhattacharya S. Prevention of doxorubicin (DOX)-induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed. Pharmacother. 2018;101:228–243. DOI: 10.1016/j.biopha.2018.02.088.

6. Jain A.K., Pandey A.K. In vivo micronucleus assay in mouse bone marrow methods. Mol. Biol. 2019;2031:135–146. DOI: 10.1007/978-1-4939-9646-9_7.

7. Christidi E., Brunham L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021;12(4):339. DOI: 10.1038/s41419-021-03614-x.

8. Boriollo M.F.G., Alves V.E., Silva T.A., Silva J.J., Barros G.B.S. Dias C.T.S. et al. Decrease of the DXR-induced genotoxicity and nongenotoxic effects of Theobroma cacao revealed by micronucleus assay. Braz. J. Biol. 2021;81(2):268–277. DOI: 10.1590/1519-6984.223687.

9. Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A. et al. EMbedding and backscattered scanning electron microscopy: a detailed protocol for the whole-specimen, high-resolution analysis of cardiovascular tissues. Front. Cardiovasc. Med. 2021;8:739549. DOI: 10.3389/fcvm.2021.739549.

10. Robert J. Long-term and short-term models for studying anthracycline cardiotoxicity and protectors. Cardiovasc. Toxicol. 2007;7:135–139. DOI: 10.1007/s12012-007-0022-4.

11. Kalender Y., Yel M., Kalender S. Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats. The effects of vitamin E and catechin. Toxicology. 2005;209(1):39–45. DOI: 10.1016/j.tox.2004.12.003.

12. Ivanová M., Dovinová I., Okruhlicová L., Tribulová N., Simončíková P., Barteková M. et al. Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacol. Sin. 2012; 33(4):459–469. DOI: 10.1038/aps.2011.194.

13. Chen P.Y., Hou C.W., Shibu M.A., Day C.H., Pai P., Liu Z.R. et al. Protective effect of Co-enzyme Q10 on doxorubicin-induced cardiomyopathy of rat hearts. Environ. Toxicol. 2017;32(2):679–689. DOI: 10.1002/tox.22270.

14. Henderson K.A., Borders R.B., Ross J.B., Abdulalil A., Gibbs S., Skowronek A.J. et al. Integration of cardiac energetics, function and histology from isolated rat hearts perfused with doxorubicin and doxorubicin-ol; a model for use in drug safety evaluations. J. Pharmacol. Toxicol. Methods. 2018;94(2):54–63. DOI: 10.1016/j.vascn.2018.08.004.

15. Podyacheva E.Y., Shmakova T.V., Andreeva D.D., Toropov R.I., Cheburkin Y.V., Danilchuk M.S. et al. Molecular markers profile of fibrosis in rats exposed to different doses of doxorubicin. Žurnal èvolûcionnoj biohimii i fiziologii. 2023;59(2):121–130. (In Russ.). DOI: 10.31857/S0044452923020043.

16. Liao H.E., Shibu M.A., Kuo W.W., Pai P.Y., Ho T.J., Kuo C.H. et al. Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis. Environ. Toxicol. 2016;31(7):769–781. DOI: 10.1002/tox.22086.

17. Nakashima M., Nakamura K., Nishihara T., Ichikawa K., Nakayama R., Takaya Y. et al. Association between cardiovascular disease and liver disease, from a clinically pragmatic perspective as a cardiologist. Nutrients. 202315(3):748. DOI: 10.3390/nu15030748.

18. Asanov M.A., Shishkova D.K., Poddubnyak A.O., Sinicky M.Yu., Sinickaya A.V., Khutornaya M.V., et al. Dose-response assessment of mitomycin C genotoxic effect on ApoE knockout mice. J. Evol. Biochem. Physiol. 2023;59(5):1693–1699. DOI: 10.1134/S0022093023050198.

19. Yang F., Teves S.S., Kemp C.J., Henikoff S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta. 2014;1845:84–89. DOI: 10.1016/j.bbcan.2013.12.002.

20. Ефимов В.А., Федюнин С.В. Кросс-сшитые нуклеиновые кислоты: получение, структура и биологическая роль. Успехи биологической химии. 2010;50:259–302. Efimov V.A., Fediunin S.V. Cross-linked nucleic acids: production, structure and biological role Uspekhi biologicheskoi khimii. 2010;50:259–302. (In Russ.). DOI: 10.1073/pnas.1821022116.

21. Rymer J.A., Rao S.V. Anemia and coronary artery disease: pathophysiology, prognosis, and treatment. Coron. Artery Dis. 2018;29(2):161–167. DOI: 10.1097/MCA.0000000000000598.


Review

For citations:


Asanov M.A., Poddubnyak A.O., Muhamadiyarov R.A., Sinitskaya A.V., Khutornaya M.V., Sinitsky M.Yu. Comprehensive assessment of subchronic low-dose exposure to doxorubicin in the Wistar rat model. Siberian Journal of Clinical and Experimental Medicine. 2024;39(4):171-179. (In Russ.) https://doi.org/10.29001/2073-8552-2024-39-4-171-179

Views: 230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)