Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Possibility of using optical coherence tomography in daily clinical practice (review)

https://doi.org/10.29001/2073-8552-2024-39-2-58-68

Abstract

Coronary heart disease (CHD) remains the primary cause of death among the adult population of Russian Federation. An effective pathogenetic method for treating this pathology is revascularization of coronary arteries, performed endovascularly or surgically. The combination of surgical radicalism and low traumatism has made stenting of the coronary arteries the leading method of CHD treating: today in Russia the number of percutaneous coronary intervention (PCI) operations is approximately 6 times higher than the number of coronary artery bypass grafting (CABG) operations. However, PCI showed comparatively lower long-term effectiveness than CABG and thus needs to be improved. Considering the number of PCIs performed, any significant increase in the effectiveness of this method can provide a significant reduction in mortality from coronary artery disease and, accordingly, mortality in general. One of the most promising ways to increase the effectiveness of PCI today is the use of modern intravascular imaging technologies.

About the Authors

I. V. Suslov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Ivan V. Suslov, Junior Research Scientist, Laboratory of Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



S. E. Pekarsky
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Stanislav E. Pekarsky, Dr. Sci. (Med.), Lead Research Scientist, Laboratory of Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



A. E. Baev
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Andrey E. Baev, Cand. Sci. (Med.), Head of the Laboratory of Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



M. G. Tarasov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Mikhail G. Tarasov, Cand. Sci. (Med.), Junior Research Scientist, Laboratory of Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



E. S. Gergert
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Egor S. Gergert, Junior Research Scintist, Laboratory of Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



R. M. Gromovoy
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Roman M. Gromovoy, Junior Research Scientist, Laboratory of 
Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



Y. I. Bogdanov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Yury I. Bogdanov, Cand. Sci. (Med.), Research Scientist, Laboratory of Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



S. M. Sultanov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Syrgak M Sultanov, Junior Research Scientist, Laboratory of 
Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



A. A. Gorokhovsky
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Alexei А. Gorokhovsky, Laboratory Assistant, Laboratory of Endovascular Surgery

111a, Kievskaya str., Tomsk, 634012



References

1. Alekyan B.G., Grigor’yan A.M., Staferov A.V., Karapetyan N.G. Endovascular diagnostics and treatment in the Russian Federation (2021). Russian Journal of Endovascular Surgery. 2022;9(Special Issue):S5– S254. (In Russ.). DOI: 10.24183/2409-4080-2022-9S-S5-S254.

2. Witzenbichler B., Maehara A., Weisz G., Neumann F.-J., Rinaldi M.J., Metzger D.C. et al. Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the Assessment of Dual Antiplatelet Therapy With Drug-Eluting Stents (ADAPT-DES) Study. Circulation. 2014;129(4):463–470. DOI: 10.1161/CIRCULATIONAHA.113.003942.

3. Hong S.-J., Kim B.-K., Shin D.-H., Nam C.-M., Kim J.-S., Ko Y.-G. et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL Randomized Clinical Trial. JAMA. 2015;314:2155–2163. DOI: 10.1001/jama.2015.15454.

4. Elgendy I.Y., Mahmoud A.N., Elgendy A.Y., Bavry A.A. Outcomes with intravascular ultrasound-guided stent implantation: a meta-analysis of randomized trials in the era of drug-eluting stents. Circ. Cardiovasc. Interv. 2016;9(4):e003700. DOI: 10.1161/CIRCINTERVENTIONS.116.003700.

5. Buccheri S., Franchina G., Romano S., Puglisi S., Venuti G., D’Arrigo P. et al. Clinical outcomes following intravascular imaging-guided versus coronary angiography-guided percutaneous coronary intervention with stent implantation: a systematic review and Bayesian network meta-analysis of 31 studies and 17,882 patients. JACC Cardiovasc. Interv. 2017;10(24):2488–2498. DOI: 10.1016/j.jcin.2017.08.051.

6. Jones D.A., Rathod K.S., Koganti S., Hamshere S., Astroulakis Z., Lim P. et al. Angiography alone versus angiography plus optical coherence tomography to guide percutaneous coronary intervention: Outcomes from the Pan-London PCI Cohort. JACC Cardiovasc. Interv. 2018;11(14):1313–1321. DOI: 10.1016/j.jcin.2018.01.274.

7. Burzotta F., Leone A.M., Aurigemma C., Zambrano A., Zimbardo G., Arioti M. et al. Fractional flow reserve or optical coherence tomography to guide management of angiographically intermediate coronary stenosis: a single-center trial. J. Am. Coll. Cardiol. Intv. 2020;13(1):49–58. DOI: 10.1016/j.jcin.2019.09.034.

8. Prati F., Di Vito L., Biondi-Zoccai G., Occhipinti M., La Manna A., Tamburino C. Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l’Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study. EuroIntervention. 2012;8(7):823–829. DOI: 10.4244/EIJV8I7A125.

9. Ali Z.A., Maehara A., Généreux P., Shlofmitz R.A., Fabbiocchi F., Nazif T.M. et al.; ILUMIEN III: OPTIMIZE PCI Investigators. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet. 2016;388(10060):2618– 2628. DOI: 10.1016/S0140-6736(16)31922-5.

10. Johnson T.W., Räber L., di Mario C., Bourantas C., Jia H., Mattesini A. et al. Clinical use of intracoronary imaging. Part 2: Acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2019;40(31):2566–2584. DOI: 10.1093/eurheartj/ehz332.

11. Sharma S.P., Rijal J., Dahal K. Optical coherence tomography guidance in percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Cardiovasc. Interv. Ther. 2019;34(2):113–121. DOI: 10.1007/s12928-018-0529-6.

12. Siddiqi T.J., Khan M.S., Karimi Galougahi K., Shlofmitz E., Moses J.W., Rao S. et al. Optical coherence tomography versus angiography and intravascular ultrasound to guide coronary stent implantation: A systematic review and meta-analysis. Catheter Cardiovasc. Interv. 2022;100(Suppl. 1):S44–S56. DOI: 10.1002/ccd.30416.

13. Jones D.A., Rathod K.S., Koganti S., Hamshere S., Astroulakis Z., Lim P. et al. Angiography alone versus angiography plus optical coherence tomography to guide percutaneous coronary intervention: Outcomes from the Pan-London PCI Cohort. JACC Cardiovasc. Interv. 2018;11(14):1313–1321. DOI: 10.1016/j.jcin.2018.01.274.

14. Wulandari A.P., Pintaningrum Y., Adheriyani R. Outcomes of optical coherence tomography guided percutaneous coronary intervention against angiography guided in patients with coronary artery disease: A systematic reviews and meta-analyses. Indian Heart J. 2023;75(2):108–114. DOI: 10.1016/j.ihj.2023.01.009.

15. Ali Z.A., Landmesser U., Maehara A., Matsumura M., Shlofmitz R.A., Guagliumi G. et al.; ILUMIEN IV Investigators. Optical coherence tomography-guided versus angiography-guided PCI. N. Engl. J. Med. 2023;19;389(16):1466–1476. DOI: 10.1056/NEJMoa2305861.

16. Lawton J.S., Tamis-Holland J.E., Bangalore S., Bates E.R., Beckie T.M., Bischoff J.M. et al. 2021 ACC/AHA/SCAI Guideline for coronary artery revascularization: Executive summary: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(3):e4–e17. DOI: 10.1161/CIR.0000000000001039.

17. Kim I.C., Yoon H.J., Shin E.S., Kim M.S., Park J., Cho Y.K. et al. Usefulness of frequency domain optical coherence tomography compared with intravascular ultrasound as a guidance for percutaneous coronary intervention. J. Interv. Cardiol. 2016;29(2):216–224. DOI: 10.1111/joic.12276.

18. Kubo T., Shinke T., Okamura T., Hibi K., Nakazawa G., Morino Y. et al. OPINION Investigators. Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): One-year angiographic and clinical results. Eur. Heart J. 2017;38(42):3139–3147. DOI: 10.1093/eurheartj/ehx351.

19. Choi S.-Y., Witzenbichler B., Maehara A., Lansky A.J., Guagliumi G., Brodie B. et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ. Cardiovasc. Interv. 2011;4:239–247. DOI: 10.1161/CIRCINTERVENTIONS.110.959791.

20. Räber L., Mintz G.S., Koskinas K.C., Johnson T.W., Holm N.R., Onuma Y. et al.; ESC Scientific Document Group. Clinical use of intracoronary imaging. Part 1: Guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2018;39(35):3281–3300. DOI: 10.1093/eurheartj/ehy285.

21. Russian Society of Cardiology (RSC). 2020 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2020;25(11):4076. (In Russ.). DOI: 10.15829/29/1560-4071-2020-4076.

22. Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al.; ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019;40(2):87– 165. DOI: 10.1093/eurheartj/ehy394.

23. Kirtane A.J., Doshi D., Leon M.B., Lasala J.M., Ohman E.M., O’Neill W.W. et al. Treatment of higher-risk patients with an indication for revascularization: evolution within the field of contemporary percutaneous coronary intervention. Circulation. 2016;134:422–431. DOI: 10.1161/CIRCULATIONAHA.116.022061.

24. Riley R.F., Henry T.D., Mahmud E., Kirtane A.J., Brilakis E.S., Goyal A. et al. SCAI position statement on optimal percutaneous coronary interventional therapy for complex coronary artery disease. Catheter Cardiovasc. Interv. 2020;96(2):346–362. DOI: 10.1002/ccd.28994.

25. Louvard Y., Thomas M., Dzavik V., Hildick-Smith D., Galassi A.R., Pan M. et al. Classification of coronary artery bifurcation lesions and treatments: time for a consensus! Catheter Cardiovasc. Interv. 2008;71(2):175–183. DOI: 10.1002/ccd.21314.

26. Meier B., Gruentzig A.R., King S.B. 3rd, Douglas J.S.Jr., Hollman J., Ischinger T. et al. Risk of side branch occlusion during coronary angioplasty. Am. J. Cardiol. 1984;53(1):10–14. DOI: 10.1016/0002-9149(84)90675-1.

27. Collins N., Seidelin P.H., Daly P., Ivanov J., Barolet A., Mackie K. et al. Long-term outcomes after percutaneous coronary intervention of bifurcation narrowings. Am. J. Cardiol. 2008;102(4):404–410. DOI: 10.1016/j.amjcard.2008.03.075.

28. Al Suwaidi J., Berger P.B., Rihal C.S., Garratt K.N., Bell M.R., Ting H.H. et al. Immediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions. J. Am. Coll. Cardiol. 2000;35(4):929– 936. DOI: 10.1016/s0735-1097(99)00648-8.

29. Steigen T.K., Maeng M., Wiseth R., Erglis A., Kumsars I., Narbute I. et al. Nordic PCI Study Group. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: the Nordic bifurcation study. Circulation. 2006;114(18):1955–1961. DOI: 10.1161/CIRCULATIONAHA.106.664920.

30. Burzotta F., Annone U., Paraggio L., D’Ascenzo F., Biondi-Zoccai G., Aurigemma C. et al. Clinical outcome after percutaneous coronary intervention with drug-eluting stent in bifurcation and nonbifurcation lesions: a meta-analysis of 23981 patients. Coron. Artery Dis. 2020;31(5):438– 445. DOI: 10.1097/MCA.0000000000000847.

31. Koppara T., Cheng Q., Yahagi K., Mori H., Sanchez O.D., Feygin J. et al. Thrombogenicity and early vascular healing response in metallic biodegradable polymer-based and fully bioabsorbable drug-eluting stents. Circ. Cardiovasc. Interv. 2015;8(6):e002427. DOI: 10.1161/CIRCINTERVENTIONS.115.002427.

32. Lamberti G., Soroush F., Smith A., Kiani M.F., Prabhakarpandian B., Pant K. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Microvasc. Res. 2015;99:19–25. DOI: 10.1016/j.mvr.2015.02.004.

33. Yazdani S.K., Nakano M., Otsuka F., Kolodgie F.D., Virmani R. Atheroma and coronary bifurcations: before and after stenting. EuroIntervention. 2010;6(Suppl. J):J24–J30. DOI: 10.4244/EIJV6SUPJA5.

34. Williams A.R., Koo B.K., Gundert T.J., Fitzgerald P.J., LaDisa J.F.Jr. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J. Appl. Physiol. 2010;109(2):532–540. DOI: 10.1152/japplphysiol.00086.2010.

35. Zhang J.J., Ye F., Xu K., Kan J., Tao L., Santoso T. et al. Multicentre, randomized comparison of two-stent and provisional stenting techniques in patients with complex coronary bifurcation lesions: the DEFINITION II trial. Eur. Heart J. 2020;41:2523–2536. DOI: 10.1093/eurheartj/ehaa543.

36. Wang R., Ding Y., Yang J., Wang K., Gao W., Fang Z. et al. Stenting techniques for coronary bifurcation disease: a systematic review and network meta-analysis demonstrates superiority of double-kissing crush in complex lesions. Clin. Res. Cardiol. 2022;111(7):761–775. DOI: 10.1007/s00392-021-01979-9.

37. Crimi G., Mandurino-Mirizzi A., Gritti V., Scotti V., Strozzi C., de Silvestri A. et al. Percutaneous coronary intervention techniques for bifurcation disease: Network meta-analysis reveals superiority of double-kissing crush. Can. J. Cardiol. 2020;36(6):906–914. DOI: 10.1016/j.cjca.2019.09.002.

38. Fujimura T., Okamura T., Tateishi H., Nakamura T., Yamada J., Oda T. et al. Serial changes in the side-branch ostial area after main-vessel stenting with kissing balloon inflation for coronary bifurcation lesions, assessed by 3D optical coherence tomography. Eur. Heart J. Cardiovasc. Imaging. 2018;19:1117–1125. DOI: 10.1093/ehjci/jex213.

39. Longobardo L., Mattesini A., Valente S., Di Mario C. OCT-guided percutaneous coronary intervention in bifurcation lesions. Interv. Cardiol. 2019;14(1):5–9. DOI: 10.15420/icr.2018.17.2.

40. Alegría-Barrero E., Foin N., Chan P.H., Syrseloudis D., Lindsay A.C., Dimopolous K. et al. Optical coherence tomography for guidance of distal cell recrossing in bifurcation stenting: choosing the right cell matters. EuroIntervention. 2012;8:205–13. DOI: 10.4244/EIJV8I2A34.

41. Daemen J., Wenaweser P., Tsuchida K., Abrecht L., Vaina S., Morger C., Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large two-institutional cohort study. Lancet. 2007;369(9562):667–678. DOI: 10.1016/S0140-6736(07)60314-6.

42. Kastrati A., Dibra A., Mehilli J., Mayer S., Pinieck S., Pache J. et al. Predictive factors of restenosis after coronary implantation of sirolimus- or paclitaxel-eluting stents. Circulation. 2006;113(19):2293–2300. DOI: 10.1161/CIRCULATIONAHA.105.601823.

43. Collet C., Collison D., Mizukami T., McCartney P., Sonck J., Ford T. et al. Differential improvement in angina and health-related quality of life after PCI in focal and diffuse coronary artery disease. JACC Cardiovasc. Interv. 2022;15(24):2506–2518. DOI: 10.1016/j.jcin.2022.09.048.

44. Hong S.J., Mintz G.S., Ahn C.M., Kim J.S., Kim B.K., Ko Y.G. et al.; IVUS-XPL Investigators. Effect of intravascular ultrasound-guided drug-eluting stent implantation: 5-year follow-up of the IVUS-XPL randomized trial. JACC Cardiovasc. Interv. 2020;13(1):62–71. DOI: 10.1016/j.jcin.2019.09.033.

45. Suslov I.V., Pekarskiy S.E., Tarasov M.G., Baev A.E., Vintizenko S.I. Stenting of a patient with long coronary artery lesion under the control of optical coherence tomography (clinical case). Siberian Journal of Clinical and Experimental Medicine. 2023;38(2):286–292. (In Russ.). DOI: 10.29001/2073-8552-2023-38-2-286-292.

46. Prati F., Romagnoli E., Burzotta F., Limbruno U., Gatto L., La Manna A. et al. Clinical impact of OCT findings during PCI: The CLI-OPCI II study. JACC Cardiovasc. Imaging. 2015;8(11):1297–1305. DOI: 10.1016/j.jcmg.2015.08.013.

47. Meneveau N., Souteyrand G., Motreff P., Caussin C., Amabile N., Ohlmann P. et al. Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: Results of the multicenter, randomized DOCTORS study (Does Optical Coherence Tomography Optimize Results of Stenting). Circulation. 2016;134(13):906–917. DOI: 10.1161/CIRCULATIONAHA.116.024393.

48. Cheneau E., Leborgne L., Mintz G.S., Kotani J., Pichard A.D., Satler L.F. et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108(1):43–47. DOI: 10.1161/01.CIR.0000078636.71728.40.

49. Wijns W., Shite J., Jones M.R., Lee S.W., Price M.J., Fabbiocchi F. et al. Optical coherence tomography imaging during percutaneous coronary intervention impacts physician decision-making: ILUMIEN I study. Eur. Heart J. 2015;36(47):3346–3355. DOI: 10.1093/eurheartj/ehv367.

50. Ozaki Y., Kitabata H., Tsujioka H., Hosokawa S., Kashiwagi M., Ishibashi K. et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circul. J. 2012;76(4):922–927. DOI: 10.1253/circj.CJ-11-1122.

51. Vijayvergiya R., Ratheesh K.J., Gupta A. Low molecular weight dextran: an alternative to radiographic contrast agent for optical coherence tomography imaging. IHJ. Cardiovasc. Case Rep. 2017;1:10–11. DOI: 10.1016/j.ihjccr.2017.03.002.

52. Kurogi K., Ishii M., Sakamoto K., Komaki S., Kusaka H., Yamamoto N. et al. Optical coherence tomography-guided percutaneous coronary intervention with low-molecular-weight dextran – effect on renal function. Circ. J. 2020;84(6):917–925. DOI: 10.1253/circj.CJ-20-0093.

53. Mahesh N.K., Gupta A., Barward P., Vijayvergiya R., Sharma P., Mahesh A. Study of saline optical coherence tomography-guided percutaneous coronary intervention (SOCT-PCI Study). Indian Heart J. 2020;72(4):239–243. DOI: 10.1016/j.ihj.2020.03.013.

54. Gore A.K., Shlofmitz E., Karimi Galougahi K., Petrossian G., Jeremias A., Sosa F.A. et al. Prospective comparison between saline and radiocontrast for intracoronary imaging with optical coherence tomography. JACC Cardiovasc. Imaging. 2020;13(9):2060–2062. DOI: 10.1016/j.jcmg.2020.04.018.

55. Gupta A., Chhikara S., Vijayvergiya R., Seth A., Mahesh N.K., Akasaka T. et al. Saline as an alternative to radio-contrast for optical coherence tomography-guided percutaneous coronary intervention: A prospective comparison. Cardiovasc. Revasc. Med. 2022;34:86–91. DOI: 10.1016/j.carrev.2021.01.010.

56. Tarasov M.G., Pekarskiy S.E., Baev A.E., Gergert E.S. The use of CO 2 to create an optical window during intravascular optical coherence tomography in a patient with an allergic reaction to iodine contrast. Siberian Journal of Clinical and Experimental Medicine. 2022;37(2):129–133. (In Russ.). DOI: 10.29001/2073-8552-2022-37-2-129-133.

57. Glagov S., Weisenberg E., Zarins C.K., Stankunavicius R., Kolettis G.J. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 1987;316(22):1371–1375. DOI: 10.1056/NEJM198705283162204.

58. Mintz G.S., Kent K.M., Pichard A.D., Popma J.J., Satler L.F., Leon M.B. Intravascular ultrasound insights into mechanisms of stenosis formation and restenosis. Cardiol. Clin. 1997;15:17–29. DOI: 10.1016/s0733-8651(05)70315-5.

59. Maehara A., Matsumura M., Ali Z.A., Mintz G.S., Stone G.W. IVUS-guided versus OCT-guided coronary stent implantation: A critical appraisal. JACC Cardiovasc. Imaging. 2017;10(12):1487–1503. DOI: 10.1016/j.jcmg.2017.09.008.

60. Kurogi K., Ishii M., Sakamoto K., Tsujita K. Observing an aorto-ostial lesion using TELESCOPE® in optical coherence tomography-guided percutaneous coronary intervention. EuroIntervention. 2020. URL: https://www.pcronline.com/Cases-resources-images/Images-interventional-cardiology/EuroIntervention-images/Aorto-ostial-lesion-observation-by-OCT (26.01.2024).


Review

For citations:


Suslov I.V., Pekarsky S.E., Baev A.E., Tarasov M.G., Gergert E.S., Gromovoy R.M., Bogdanov Y.I., Sultanov S.M., Gorokhovsky A.A. Possibility of using optical coherence tomography in daily clinical practice (review). Siberian Journal of Clinical and Experimental Medicine. 2024;39(2):58-68. (In Russ.) https://doi.org/10.29001/2073-8552-2024-39-2-58-68

Views: 345


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)