Implantation of a self-expanding transcatheter valve in vitro into a 3D heart model of a patient with right ventricular outflow tract dysfunction
https://doi.org/10.29001/2073-8552-2024-39-2-104-111
Abstract
Introduction. Transcatheter pulmonary valve implantation is one of the most relevant issues in endovascular surgery for congenital heart defects. However, at present, there is no “ideal” valve for transcatheter implantation. Balloon-expandable pulmonary valves for transcatheter implantation have a rigid frame, which requires pre-stenting of the native right ventricular outflow tract or the valve-containing conduit to avoid perioperative complications. This tactic increases the procedure time, complicates the valve implantation technique, and raises the cost of the operation. Self-expanding valves, which are primarily aimed at addressing pulmonary regurgitation, present an alternative. Determining an adequate implantation zone for the valve is crucial for the successful treatment of a dilated native right ventricular outflow tract. This is why preoperative CT imaging protocol, with 3D reconstruction providing detailed anatomical structures at every level, plays a significant role.
Aims. To assess the properties of the transcatheter self-expanding frame of the pulmonary artery valve and to perform its in vitro implantation in a 3D model of a patient with right ventricular outflow tract dysfunction.
Material and Methods. We developed a model of a self-expanding nitinol frame for a transcatheter valve for implantation in the position of the pulmonary artery, based on the most commonly encountered anatomy of right ventricular outflow tract dysfunction. We conducted tests for radial forces of the frame and valve loading trials in the delivery system. Results. A 3D reconstruction of the right heart chambers with the inferior vena cava was performed, with detailed anatomical structure delineation at each level. A 3D model was printed on an SLA 3D printer, Formlabs Form 3B+, using Elastic 50A photopolymer (Formlabs Inc., USA). Under fluoroscopic guidance, a test implantation of the pulmonary artery valve frame was carried out.
Conclusion. By optimizing the design of the supporting frame, we were able to improve the transcatheter valve frame model based on the analysis of the most common right ventricular outflow tract dysfunctions. 3D-printed constructs enable the safe testing of developing transcatheter valve models and help identify and timely address any existing deficiencies.
About the Authors
A. V. VoitovRussian Federation
Alexey V. Voitov, Cand. Sci. (Med.), Cardiovascular surgeon of the Department of congenital heart defects; Researcher, Center for New Surgical Technologies, Meshalkin National Medical Research Center
Rechkunovskaya Str. 15, Novosibirsk, 630055
S. N. Manukian
Russian Federation
Serezha N. Manukian, graduate student, Center for New Surgical Technologies
Rechkunovskaya Str. 15, Novosibirsk, 630055
S. V. Vladimirov
Russian Federation
Sergei V. Vladimirov, Junior Researcher, Laboratory of Bioprosthesis, Institute of Experimental Biology and Medicine
Rechkunovskaya Str. 15, Novosibirsk, 630055
V. P. Borodin
Russian Federation
Vsevolod P. Borodin, engineer, Laboratory of Bioprosthesis, Institute of Experimental Biology and Medicine
Rechkunovskaya Str. 15, Novosibirsk, 630055
E. Kobelev
Russian Federation
Evgenii Kobelev, Radiologist, X-ray Department, Meshalkin National Medical Research Center
Rechkunovskaya Str. 15, Novosibirsk, 630055
I. Yu. Zhuravleva
Russian Federation
Irina Yu. Zhuravleva, Dr. Sci. (Med.), Director of the Institute of Experimental Biology and Medicine
Rechkunovskaya Str. 15, Novosibirsk, 630055
A. N. Arkhipov
Russian Federation
Alexey N. Arkhipov, Cand. Med. Sci., Head of the Department of Congenital Heart Defects; Cardiovascular surgeon of the Department of congenital heart defects; Senior Researcher
Rechkunovskaya Str. 15, Novosibirsk, 630055
A. V. Gorbatykh
Russian Federation
Artem V. Gorbatykh, Cand. Sci. (Med.), Head of NIL Intervention Surgery, X-ray Endovascular Diagnostics and Treatment Department of X-ray Surgical Diagnostics and Treatment
2, Akkuratova str., Saint-Petersburg, 197341
K. A. Rzaeva
Russian Federation
Kseniya A. Rzaeva, Postgraduate student of the Center for New Surgical Technologies
Rechkunovskaya Str. 15, Novosibirsk, 630055
N. R. Nichay
Russian Federation
Natalya R. Nichay, Cand. Sci. (Med.), Cardiovascular surgeon of the Department of congenital heart defects; Junior Researcher, Center for New Surgical Technologies
Rechkunovskaya Str. 15, Novosibirsk, 630055
52, Krasnyj prospect, Novosibirsk, 630091
A. V. Bogachev-Prokophiev
Russian Federation
Alexander V. Bogachev-Prokophiev, Dr. Sci. (Med.), Director of the Institute of Circulatory Pathology, cardiovascular surgeon
Rechkunovskaya Str. 15, Novosibirsk, 630055
I. A. Soynov
Russian Federation
Ilya A. Soynov, Cand. Sci. (Med.), Cardiovascular surgeon of the Department of congenital heart defects; Senior Researcher of the Center for New Surgical Technologies
Rechkunovskaya Str. 15, Novosibirsk, 630055
References
1. Soynov I.A., Zhuravleva I.Iu., Kulyabin Yu.Yu., Nichay N.R., Afanas’ev A.V., Aleshkevich N.P. et al. Valved conduits in pediatric cardiac surgery. Khirurgiya. Zurnal im. N.I. Pirogov Russian Journal of Surgery. 2018;(1):75– 81. DOI: 10.17116/hirurgia2018175-81.
2. Nordmeyer J., Ewert P., Gewillig M., AlJufan M., Carminati M., Kretschmar O. et al. Acute and midterm outcomes of the post-approval MELODY Registry: a multicentre registry of transcatheter pulmonary valve implantation. Eur. Heart J. 2019;40(27):2255–2264. DOI: 10.1093/eurheartj/ehz201.
3. Rzaeva K.A., Timchenko T.P., Zhuravleva I.Yu., Arkhipov A.N., Gorbatykh A.V., Voitov A.V. et al. Technical features of a self-expandable prosthetic valve for the treatment of pulmonary valve disease. Circulation Pathology and Cardiac Surgery. 2022;26(3):85–90. DOI: 10.21688/1681-3472- 2022-3-85-90.
4. Bonhoeffer P., Boudjemline Y., Saliba Z., Hausse A.O., Aggoun Y., Bonnet D., Sidi D., Kachaner J. Transcatheter implantation of a bovine valve in pulmonary position: a lamb study. Circulation. 2000;102(7):813–816. DOI: 10.1161/01.cir.102.7.813.
5. Fasel J.H., Aguiar D., Kiss-Bodolay D., Montet X., Kalangos A., Stimec B.V. et al. Adapting anatomy teaching to surgical trends: a combination of classical dissection, medical imaging, and 3D-printing technologies. Surg. Radiol. Anat. 2016;38(3):361–367. DOI: 10.1007/s00276-015-1588-3.
6. Valverde I., Sarnago F., Prieto R., Zunzunegui J.L. Three-dimensional printing in vitro simulation of percutaneous pulmonary valve implantation in large right ventricular outflow tract. Eur. Heart J. 2016;38(16):1262– 1263. DOI: 10.1093/eurheartj/ehw546.
7. Lurz P., Coats L., Khambadkone S., Nordmeyer J., Boudjemline Y., Schievano S., et al. Percutaneous pulmonary valve implantation: impact of evolving technology and learning curve on clinical outcome. Circulation. 2008;117(15):1964–1972. DOI: 10.1161/CIRCULATIONAHA.107.735779.
8. Schievano S., Capelli C., Young C., Lurz P., Nordmeyer J., Owens C. et al. Four-dimensional computed tomography: a method of assessing right ventricular outflow tract and pulmonary artery deformations throughout the cardiac cycle. Eur. Radiol. 2011;21(1):36–45. DOI: 10.1007/s00330-010-1913-5.
9. Anwar S., Singh G.K., Miller J., Sharma M., Manning P., Billadello J.J. et al. 3D printing is a transformative technology in congenital heart disease. JACC Basic Transl. Sci. 2018;3(2):294–312. DOI: 10.1016/j.jacbts.2017.10.003.
10. Nollert G., Fischlein T., Bouterwek S., Böhmer C., Klinner W., Reichart B. Long-term survival in patients with repair of tetralogy of Fallot: 36-year follow-up of 490 survivors of the first year after surgical repair. J. Am. Coll. Cardiol. 1997;30(5):1374–1383. DOI: 10.1016/s0735-1097(97)00318-5.
11. Canan A., Ocazionez-Trujillo D., Vargas D., Foley T.A., Cabalka A.K., Rajiah P.S. Pre- and postprocedure imaging of transcatheter pulmonary valve implantation. Radiographics. 2022;42(4):991–1011. DOI: 10.1148/rg.210160.
12. Soynov I.A., Manukyan S.N., Rzaeva K.A., Voitov A.V., Timchenko T.P., Kobelev E. et al. Dysfunctions of right ventricular outflow tract. Kardiologiya i Serdechno-Sosudistaya Khirurgiya. 2023;16(4):351357. (In Russ.).DOI: 10.17116/kardio202316041351.
13. Biglino G., Capelli C., Binazzi A., Reggiani R., Cosentino D., Migliavacca F. et al. Virtual and real bench testing of a new percutaneous valve device: A case study. EuroIntervention. 2012;8(1):120–128. DOI: 10.4244/EIJV8I1A19.
14. Ansari M.M., Cardoso R., Garcia D., Sandhu S., Horlick E., Brinster D. et al. Percutaneous pulmonary valve implantation: Present status and evolving future. J. Am. Coll. Cardiol. 2015;66(20):2246–2255. DOI: 10.1016/j.jacc.2015.09.055.
15. Han Y., Shao Z., Sun Z., Han Y., Xu H., Song S. et al. In vitro bench testing using patient-specific 3D models for percutaneous pulmonary valve implantation with Venus P-valve. Chin. Med. J. (Engl.). 2023; Online ahead of print. DOI: 10.1097/CM9.0000000000002793.
Review
For citations:
Voitov A.V., Manukian S.N., Vladimirov S.V., Borodin V.P., Kobelev E., Zhuravleva I.Yu., Arkhipov A.N., Gorbatykh A.V., Rzaeva K.A., Nichay N.R., Bogachev-Prokophiev A.V., Soynov I.A. Implantation of a self-expanding transcatheter valve in vitro into a 3D heart model of a patient with right ventricular outflow tract dysfunction. Siberian Journal of Clinical and Experimental Medicine. 2024;39(2):104-111. (In Russ.) https://doi.org/10.29001/2073-8552-2024-39-2-104-111