Vegetative state assessment in children with supraventricular arrhythmias before and after radiofrequency ablation
https://doi.org/10.29001/2073-8552-2024-39-2-141-148
Abstract
Aim: To assess erythrocyte membranes β-adrenoreactivity and heart rate variability (HRV) in children with supraventricular arrhythmias initially and in the early period after radiofrequency ablation (RFA).
Study method. The study included 43 patients 13 [10; 15] years with supraventricular arrhythmias and indications for interventional treatment. The patients were divided into groups depending on the electrophysiological variant of the arrhythmias: manifest Wolf-Parkinson-White (WPW) phenomenon – 15 patients; latent and manifest WPW syndrome – 13 patients; atrioventricular nodal reentry tachycardia (AVNRT) – 10 patients; atrial ectopic tachycardia – 5 patients. The control group consisted of 11 practically healthy children 14 [12; 16] years. The patients underwent RFA. Initially and in 3–5 days after RFA, the following was performed: HRV time analysis according to Holter monitoring ECG; determination of erythrocyte membranes β-adrenoreactivity in blood samples.
Results. In all groups, initially and in 3–5 days after RFA, the median level of erythrocyte membranes β-adrenoreactivity remained within the normal range; no statistically significant changes in the indicator were detected, including when compared with the control group. Analyzing HRV in patients with the WPW phenomenon and syndrome, pNN50 and rMSSD values decreased statistically significantly after RFA, p = 0.004, p = 0.047, respectively. In patients with AVNRT, the level of SDANNi increased statistically significantly, p = 0.007. The changes indicate a decrease in the influence of the vagus nerve and an increase in sympathetic influences, which is regarded as a decrease in HRV.
Conclusion. Supraventricular arrhythmias in children with structurally normal hearts are not accompanied by dysfunction of the autonomic nervous system (ANS) according to the analysis of erythrocyte membranes β-adrenoreactivity and HRV, which indicates the absence of a significant contribution of the ANS to the pathogenesis of these arrhythmias. In the early postoperative period after RFA, a decrease in HRV was noted, associated with manifestations of operational stress. The lack of dynamics in the erythrocyte membranes β-adrenoreactivity level after RFA indicates that in this category of patients HRV indicators respond faster. The study results suggest the value of HRV assessment in patients with supraventricular arrhythmias, while the use of erythrocyte membranes β-adrenoreactivity is more promising in patients with ventricular arrhythmias in whom HRV analysis is limited.
About the Authors
Y. E. PerevoznikovaRussian Federation
Yulyana E. Perevoznikova, Junior Research Scientist, Department of
Pediatric Cardiology
111a, Kievskaya str., Tomsk, 634012
L. I. Svintsova
Russian Federation
Liliya I. Svintsova, Dr. Sci. (Med.), Leading Research Scientist, Department of Pediatric Cardiology
111a, Kievskaya str., Tomsk, 634012
T. Yu. Rebrova
Russian Federation
Tatiana Yu. Rebrova, Cand. Sci. (Med.), Research Scientist, Laboratory of Molecular and Cellular Pathology and Genetic Testing
111a, Kievskaya str., Tomsk, 634012
O. Yu. Dzhaffarova
Russian Federation
Olga Yu. Dzhaffarova, Cand. Sci. (Med.), Senior Research Scientist, Department of Pediatric Cardiology
111a, Kievskaya str., Tomsk, 634012
E. V. Yakimova
Russian Federation
Evgenia V. Yakimova, Pediatric Cardiologist, Consultative and Diagnostic Department
111a, Kievskaya str., Tomsk, 634012
E. F. Muslimova
Russian Federation
Elina F. Muslimova, Cand. Sci. (Med.), Research Scientist, Laboratory of Molecular and Cellular Pathology and Genetic Testing
111a, Kievskaya str., Tomsk, 634012
S. A. Afanasiev
Russian Federation
Sergey A. Afanasiev, Dr. Sci. (Med.), Professor, Head of the Laboratory of Molecular and Cellular Pathology and Genetic Testing
111a, Kievskaya str., Tomsk, 634012
References
1. Nanthakumar K., Lau Y.R., Plumb V.J., Epstein A.E., Kay G.N. Electrophysiological findings in adolescents with atrial fibrillation who have structurally normal hearts. Circ. 2004;110(2):117–123. DOI: 10.1161/01.CIR.0000134280.40573.D8.
2. Aksu T., Gopinathannair R., Gupta D., Pauza D.H. Intrinsic cardiac autonomic nervous system: What do clinical electrophysiologists need to know about the “heart brain”? J. Cardiovasc. Electrophysiol. 2021;32(6):1737–1747. DOI: 10.1111/jce.15058.
3. Shen M.J. The cardiac autonomic nervous system: an introduction. Herzschrittmacherther Elektrophysiol. 2021;32(3):295–301. DOI: 10.1007s00399-021-00776-1.
4. Plotnikova I.V., Afanasiev S.A., Perevoznikova Yu.E., Svintsova L.I., Rebrova T.Yu., Dzhaffarova O.Yu. The effect of the autonomic nervous system on the formation of cardiac arrhythmias in childhood (review). Siberian Journal of Clinical and Experimental Medicine. 2023;38(2):23–29. (In Russ.). DOI: 10.29001/2073-8552-2023-38-2-23-29.
5. Franciosi S., Perry F.K.G., Roston T.M., Armstrong K.R., Claydon V.E., Sanatani S. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton. Neurosci. 2017;205:1–11. DOI: 10.1016/j.autneu.2017.03.005.
6. Hayano J., Yuda E. Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 2019;38(1):3. DOI: 10.1186/s40101-019-0193-2.
7. Tiwari R., Kumar R., Malik S., Raj T., Kumar P. Analysis of heart rate variability and implication of different factors on heart rate variability. Curr. Cardiol. Rev. 2021;17(5):e160721189770. DOI: 10.2174/1573403X16999201231203854.
8. Atabekov T.A., Batalov R.E., Rebrova T.Y., Krivolapov S.N., Muslimova E.F., Khlynin M.S. et al. Ventricular tachycardia incidence and erythrocyte membranes β-adrenoreactivity in patients with implanted cardioverter-defibrillator. Pacing Clin. Electrophysiol. 2022;45(4):452–460. DOI: 10.1111/pace.14479.
9. Huang W.A., Boyle N.G., Vaseghi M. Cardiac innervation and the autonomic nervous system in Sudden Cardiac Death. Card. Electrophysiol. Clin. 2017;9(4):665–679. DOI: 10.1016/j.ccep.2017.08.002.
10. Shen M.J., Zipes D.P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 2014;114(6):1004–1021. DOI: 10.1161/CIRCRESAHA.113.302549.
11. Harteveld L.M., Nederend I., Ten Harkel A.D.J., Schutte N.M., de Rooij S.R., Vrijkotte T.G.M. et al. Maturation of the cardiac autonomic nervous system activity in children and adolescents. J. Am. Heart Assoc. 2021;10(4):e017405. DOI: 10.1161/JAHA.120.017405.
12. Eyre E.L., Duncan M.J., Birch S.L., Fisher J.P. The influence of age and weight status on cardiac autonomic control in healthy children: a review. Auton. Neurosci. 2014;186:8–21. DOI: 10.1016/j.autneu.2014.09.019.
13. Smoljo T., Stanić I., Sila S., Kovačić U., Crnošija L., Junaković A. et al. The relationship between autonomic regulation of cardiovascular function and body composition. J. Obes. Metab. Syndr. 2020;29(3):188–197. DOI: 10.7570/jomes20041.
14. Davletyarova K., Vacher P., Nicolas M., Kapilevich L.V., Mourot L. Associations between heart rate variability-derived indexes and training load: Repeated measures correlation approach contribution. J. Strength Cond. Res. 2022;36(7):2005–2010. DOI: 10.1519/JSC.0000000000003760.
15. Hoshi R.A., Santos I.S., Dantas E.M., Andreão R.V., Mill J.G., Duncan B.B. et al. Diabetes and subclinical hypothyroidism on heart rate variability. Eur. J. Clin. Invest. 2020;50(12):e13349. DOI: 10.1111/eci.13349.
16. Emkanjoo Z., Mottadayen M., Givtaj N., Alasti M., Arya A., Haghjoo M. et al. Evaluation of post-radiofrequency myocardial injury by measuring cardiac troponin I levels. Int. J. Cardiol. 2007;117(2):173–177. DOI: 10.1016/j.ijcard.2006.04.066.
17. Kizilirmak F., Gokdeniz T., Gunes H.M., Demir G.G., Cakal B., Guler G.B. et al. Myocardial injury biomarkers after radiofrequency catheter and cryoballoon ablation for atrial fibrillation and their impact on recurrence. Kardiol Pol. 2017;75(2):126–134. DOI: 10.5603/KP.a2016.0089.
18. Dzhaffarova О.Yu., Svintsova L.I., Plotnikova I.V., Krivolapov S.N., Kartofeleva E.O. Assessment of the potential damaging effect of radiofrequency exposure in children in prospective followup (сase report series). Siberian Journal of Clinical and Experimental Medicine. 2020;35(3):116– 124. (In Russ.). DOI: 10.29001/2073-8552-2020-35-3-116-124.
19. Polyakova I.P., Gukasova I.I., Bockeria L.A., Revishvili A.Sh. Electrophysiological and biochemical markers of myocardial damage during radiofrequency ablation of supraventricular tachyarrhythmias in children. Bulletin of Arrhythmology. 2002;29:5–9. (In Russ.). URL: http://www.vestar.ru/article_print.jsp?id=545 (08.05.2024)
Review
For citations:
Perevoznikova Y.E., Svintsova L.I., Rebrova T.Yu., Dzhaffarova O.Yu., Yakimova E.V., Muslimova E.F., Afanasiev S.A. Vegetative state assessment in children with supraventricular arrhythmias before and after radiofrequency ablation. Siberian Journal of Clinical and Experimental Medicine. 2024;39(2):141-148. (In Russ.) https://doi.org/10.29001/2073-8552-2024-39-2-141-148