Changes in electrical parameters of the heart in an experimental model of malignant tumor growth during of hyperthyroidism
https://doi.org/10.29001/2073-8552-2024-39-3-156-163
Abstract
Experimental and clinical studies demonstrate the possibility of modulating the development of malignant tumors in thyroid imbalance, in particular hyperthyroidism, which negatively affects the electrophysiology of the heart. In an experimental model of tumor growth during of hyperthyroidism, activation of the tumor was shown.
Aim: To study electrophysiological parameters of the mouse heart at the initial stages of transplantable tumor growth during of hyperthyroidism.
Material and Methods. In female mice of the C57BL/6 line (n = 20) was created a model of melanoma B16/F10 growth during of hyperthyroidism, which was induced by daily intraperitoneal administration of liothyronine sodium (T3) for a long time and confirmed by determining the content of thyroid-stimulating hormone and triiodothyronine in the blood using the radioimmune method. On the 5th day of T3 administration, the melanoma was transplanted. ECG was recorded non-invasively (ecgTUN- NEL, ecgAVG software, emka TECHNOLOGIES, France) on the 1st and 3rd days of T3 administration, in groups with a tumor – on the 6th day after its transplantation.
Results. Pathological changes were revealed: in the group with hyperthyroidism – rhythm irregularity, decrease the amplitude of P and T below the isoline, widening of the QRS, on the 3rd day – the death of 1 mouse was noted due to large-focal myocardial infarction; in the group with melanoma – only sinus arrhythmia and decreased heart rate; in the group with a combination of pathologies – an almost normal ECG, with the exception of an increase in P amplitude and a slight increase in QRS.
Conclusion. Already in the early stages of hyperthyroidism or tumor growth, there was a violation of myocardial depolarization/ repolarization processes, capable of causing even death of the animal. In case of comorbidity, the majority of ECG parameters normalized, indicating the inclusion of compensatory mechanisms in the interaction of pathologies. The results demonstrate the need for a deeper study of the mechanisms of interaction of several simultaneously existing pathologies in the body.
Keywords
About the Authors
E. M. FrantsiyantsRussian Federation
Elena M. Frantsiyants, Dr. Sci. (Biol.), Professor, Deputy General Director for Science
63, 14 line, Rostov-on-Don, 344037
I. V. Kaplieva
Russian Federation
Irina V. Kaplieva, Dr. Sci. (Med.), Head of Laboratory of Malignant Tumor Pathogenesis Study
63, 14 line, Rostov-on-Don, 344037
E. A. Sheiko
Russian Federation
Elena A. Sheiko, Cand. Sci. (Biol.), Junior Research Scientist, Laboratory of Malignant Tumor Pathogenesis Study
63, 14 line, Rostov-on-Don, 344037
E. I. Surikova
Russian Federation
Ekaterina I. Surikova, Cand. Sci. (Biol.), Senior Research Scientist, Laboratory of Malignant Tumor Pathogenesis Study
63, 14 line, Rostov-on-Don, 344037
E. O. Vasileva
Russian Federation
Ekaterina O. Vasileva, Radiotherapist, Department of Radiotherapy No. 1
63, 14 line, Rostov-on-Don, 344037
I. V. Neskubina
Russian Federation
Irina V Neskubina, Dr. Sci. (Biol.), Senior Research Scientist, Laboratory of Malignant Tumor Pathogenesis Study
63, 14 line, Rostov-on-Don, 344037
M. A. Gusareva
Russian Federation
Marina A. Gusareva, Cand. Sci. (Med.), Head of the Department of Radiology
63, 14 line, Rostov-on-Don, 344037
O. V. Bykadorova
Russian Federation
Oksana V. Bykadorova, Functional Diagnostics Doctor, Clinical and Diagnostic Department
63, 14 line, Rostov-on-Don, 344037
L. K. Trepitaki
Russian Federation
Lidia K. Trepitaki, Cand. Sci. (Biol.), Research Scientist, Laboratory of Malignant Tumor Pathogenesis Study
63, 14 line, Rostov-on-Don, 344037
N. D. Cheryarina
Russian Federation
Natalia D. Cheryarina, Laboratory Assistant, Laboratory of Malignant Tumor Pathogenesis Study
63, 14 line, Rostov-on-Don, 344037
E. V. Serdyukova
Russian Federation
Elizaveta V. Serdyukova, Functional Diagnostics Doctor, Clinical and Diagnostic Department
63, 14 line, Rostov-on-Don, 344037
A. A. Vereskunova
Alexandra A. Vereskunova, Student
29, Nahichevanskij str., Rostov-on-Don, 344022
References
1. Gauthier B.R., Sola-García A., Cáliz-Molina M.Á., Lorenzo P.I., Cobo-Vuilleumier N., Capilla-González V. et al. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11):e13260. DOI: 10.1111/acel.13260.
2. Razvi S., Jabbar A., Pingitore A., Danzi S., Biondi B., Klein I. et al. Thyroid hormones and cardiovascular function and diseases. J. Am. Coll. Cardiol. 2018;71(16):1781–1796. DOI: 10.1016/j.jacc.2018.02.045.
3. Chaulin A.M., Grigoreva Yu.V. Modern ideas about the cardiovascular effects of hypo – and hyperthyroidism. Modern problems of science and education. Online Publishing. 2021;(6). (In Russ.). DOI: 10.17513/spno.31202.
4. Krashin E., Piekiełko-Witkowska A., Ellis M., Ashur-Fabian O. Thyroid hormones and cancer: A comprehensive review of preclinical and clinical studies. Front. Endocrinol. (Lausanne). 2019;10:59. DOI: 10.3389/fendo.2019.00059.
5. Kit O.I., Kaplieva I.V., Frantsiyants E.M., Trepitaki L.K., Pogorelova Yu.A. Characteristics of thyroid status in experimental liver metastasis. Experimental and Clinical Gastroenterology. 2016;(11):53–58. (In Russ.). URL: https://www.nogr.org/jour/article/view/324/324 (19.08.2024).
6. Goemann I.M., Romitti M., Meyer E.L.S., Wajner S.M., Maia A.L. Role of thyroid hormones in the neoplastic process: an overview. Endocr. Relat. Cancer. 2017;24(11):R367–R385. DOI: 10.1530/ERC-17-0192.
7. Reddy V., Taha W., Kundumadam S., Khan M. Atrial fibrillation and hyperthyroidism: A literature review. Indian Heart J. 2017;69(4):545–550. DOI: 10.1016/j.ihj.2017.07.004.
8. Locati E.T., Bagliani G., Padeletti L. Normal ventricular repolarization and QT interval: Ionic background, modifiers, and measurements. Card. Electrophysiol. Clin. 2017;9(3):487–513. DOI: 10.1016/j.ccep.2017.05.007.
9. Ovsepyan A.A., Panchenkov D.N., Prokhortchouk E.B., Telegin G.B., Zhigalova N.A., Golubev E.P. et al. Modeling myocardial infarction in mice: methodology, monitoring, pathomorphology. Acta Naturae. 2011;3(1):107– 115. (In Russ., In Engl.). DOI: 10.32607/20758251-2011-3-1-107-115.
10. Nakamura M., Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 2018;15(7):387–407. DOI: 10.1038/s41569-018-0007-y.
11. Dzhumaniiazova I.K., Smirnova O.V. Effects of thyroid hormones on electrical and mechanical parameters of the heart. Human Physiology. 2020;46(5):115–125. (In Russ.). DOI: 10.31857/S0131164620050045.
12. Takawale A., Aguilar M., Bouchrit Y., Hiram R. Mechanisms and management of thyroid disease and atrial fibrillation: Impact of atrial electrical remodeling and cardiac fibrosis. Cells. 2022;11(24):4047. DOI: 10.3390/cells11244047.
13. Go M.T., George A.M., Tahsin B., Fogelfeld L. Tachycardia in hyperthyroidism: Not so common. PLoS One. 2022;17(9):e0273724. DOI: 10.1371/journal.pone.0273724.
14. McDermott M.T. Hyperthyroidism. Ann. Intern. Med. 2020;172(7):ITC49– ITC64. DOI: 10.7326/AITC202004070.
15. Davis P.J., Leonard J.L., Lin H.Y., Leinung M., Mousa S.A. Molecular basis of nongenomic actions of thyroid hormone. Vitam. Horm. 2018;106:67–96. DOI: 10.1016/bs.vh.2017.06.001.
16. Meijers W.C., Maglione M., Bakker S.J.L., Oberhuber R., Kieneker L.M., de Jong S. et al. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138(7):678–691. DOI: 10.1161/CIRCULATIONAHA.117.030816.
17. Awwad L., Aronheim A. Cardiac dysfunction promotes cancer progression via multiple secreted factors. Cancer Res. 2022;82(9):1753–1761. DOI: 10.1158/0008-5472.CAN-21-2463.
18. Avraham S., Abu-Sharki S., Shofti R., Haas T., Korin B., Kalfon R. et al. Early cardiac remodeling promotes tumor growth and metastasis. Circulation. 2020;142(7):670–683. DOI: 10.1161/CIRCULATIONAHA.120.046471.
19. Achlaug L., Awwad L., Langier Goncalves I., Goldenberg T., Aronheim A. Tumor growth ameliorates cardiac dysfunction and suppresses fibrosis in a mouse model for duchenne muscular dystrophy. Int. J. Mol. Sci. 2023;24(16):12595. DOI: 10.3390/ijms241612595.
20. Da Silva I.B., Gomes D.A., Alenina N., Bader M., Dos Santos R.A., Barreto-Chaves M.L.M. Cardioprotective effect of thyroid hormone is mediated by AT2 receptor and involves nitric oxide production via Akt activation in mice. Heart Vessels. 2018;33(6):671–681. DOI: 10.1007/s00380-017-1101-5.
Review
For citations:
Frantsiyants E.M., Kaplieva I.V., Sheiko E.A., Surikova E.I., Vasileva E.O., Neskubina I.V., Gusareva M.A., Bykadorova O.V., Trepitaki L.K., Cheryarina N.D., Serdyukova E.V., Vereskunova A.A. Changes in electrical parameters of the heart in an experimental model of malignant tumor growth during of hyperthyroidism. Siberian Journal of Clinical and Experimental Medicine. 2024;39(3):156-163. (In Russ.) https://doi.org/10.29001/2073-8552-2024-39-3-156-163