Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Peptides are cardioprotective drugs of the future. Adrenomedullin

https://doi.org/10.29001/2073-8552-2025-40-1-11-18

Abstract

The widespread use of percutaneous coronary intervention (PCI) as a method of treatment for acute myocardial infarction (AMI) has radically reduced mortality in this disease. However, the mortality rate still remains high and, according to some reports, for myocardial infarction with ST segment elevation can reach 7–9%. Today, when using PCI, cardiac reperfusion injury comes to the fore. Unfortunately, drugs used in clinical practice for treatment of AMI are low effective against reperfusion injury of the heart. There is an urgent need to develop drugs with a molecular mechanism of action that is different from those of drugs already used to treat AMI. The prototype for creating such drugs could be polypeptide adrenomedullin. The purpose of this review is to analyze articles devoted to the cardioprotective effect of adrenomedullin in cardiac ischemia and reperfusion. Adrenomedullin has been shown to reduce myocardial infarct size, inhibit cardiomyocyte apoptosis, and prevent the occurrence of post-infarction cardiac remodeling. Adrenomedullin is able to selectively enhance cardiac tolerance to reperfusion injury. It has been shown that the cardioprotective effect of adrenomedullin is associated with activation of Akt kinase, NO-synthase, protein kinase A, an increase in the cGMP level in myocardial tissue and increased NO synthesis in the heart.

About the Authors

S. V. Popov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Sergey V. Popov, Dr. Sci. (Med.), Academician of the Russian Academy of Sciences, Director

111a, Kievskaya str., Tomsk, 634012



L. N. Maslov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Leonid N. Maslov, Dr. Sci. (Med.), Professor, Head of the Laboratory of Experimental Cardiology

111a, Kievskaya str., Tomsk, 634012



A. V. Mukhomedzyanov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Alexander V. Mukhomedzyanov, Cand. Sci. (Med.), Research Scientist, Laboratory of Experimental Cardiology

111a, Kievskaya str., Tomsk, 634012

 



A. S. Slidnevskaya
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Alisa S. Slidnevskaya, Senior Laboratory Assistant, Laboratory of Experimental Cardiology

111a, Kievskaya str., Tomsk, 634012



A. Kan
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Arthur Kan, Senior Laboratory Assistant, Laboratory of Experimental Cardiology

111a, Kievskaya str., Tomsk, 634012



N. V. Naryzhnaya
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Natalia V. Naryzhnaya, Dr. Sci. (Med.), Leading Research Scientist, Laboratory of Experimental Cardiology

111a, Kievskaya str., Tomsk, 634012



Yu. G. Birulina
Siberian State Medical University of the Ministry of Health of the Russian Federation (Siberian State Medical University)
Russian Federation

Yulia G. Birulina, Cand. Sci. (Biol.), Associate Professor, Department of Biophysics and Functional Diagnostics

2, Moskovsky tract, Tomsk, 634050



T. V. Lasukova
Siberian State Medical University of the Ministry of Health of the Russian Federation (Siberian State Medical University)
Russian Federation

Tatyana V. Lasukova, Dr. Sci. (Biol.), Professor, Department of Physiology

2, Moskovsky tract, Tomsk, 634050



Yu. K. Podoxenov
Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences (Cardiology Research Institute, Tomsk NRMC)
Russian Federation

Yuri K. Podoksenov, Dr. Sci. (Med.)., Leading Research Scientist, Department of Cardiovascular Surgery

111a, Kievskaya str., Tomsk, 634012



References

1. Currey E.M., Falconer N., Isoardi K.Z., Barras M. Impact of pharmacists during in-hospital resuscitation or medical emergency response events: A systematic review. Am. J. Emerg. Med. 2024;75:98–110. https://doi.org/10.1016/j.ajem.2023.10.020

2. Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R. et al. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1_Pt_B):102049. https://doi.org/10.1016/j.cpcardiol.2023.102049

3. Nanavaty D., Sinha R., Kaul D., Sanghvi A., Kumar V., Vachhani B. et al. Impact of COVID-19 on acute myocardial infarction: A national inpatient sample analysis. Curr. Probl. Cardiol. 2024;49(1_Pt_A):102030. https://doi.org/10.1016/j.cpcardiol.2023.102030

4. Hti Lar Seng N.S., Zeratsion G., Pena Zapata O.Y., Tufail M.U., Jim B. Utility of cardiac troponins in patients with chronic kidney disease. Cardiol. Rev. 2024;32(1):62–70. https://doi.org/10.1097/CRD.0000000000000461

5. Luo Q., Sun W., Li Z., Sun J., Xiao Y., Zhang J. et al. Biomaterialsmediated targeted therapeutics of myocardial ischemia-reperfusion injury. Biomaterials. 2023;303:122368. https://doi.org/10.1016/j.biomaterials.2023.122368

6. Motova A.V., Karetnikova V.N., Osokina A.V., Polikutina O.M., Barbarash O.L. Type 2 myocardial infarction: Diagnostic features in real clinical practice. Siberian Journal of Clinical and Experimental Medicine. 2022;37(3):75–82. (In Russ.). https://doi.org/10.29001/2073-8552-2022-37-3-75-82

7. Vyshlov E.V., Alexeeva Y.A., Ussov W.Yu., Mochula O.V., Ryabov V.V. Phenomena of microvascular myocardial injury in patients with primary ST-segment elevation myocardial infarction: Prevalence and association with clinical characteristics. Siberian Journal of Clinical and Experimental Medicine. 2022;37(1):36–46. (In Russ.). https://doi.org/10.29001/2073-8552-2021-36-4-36-46

8. Li M., Hu L., Li L. Research progress of intra-aortic balloon counterpulsation in the treatment of acute myocardial infarction with cardiogenic shock: A review. Medicine (Baltimore). 2023;102(49):e36500. https://doi.org/10.1097/MD.0000000000036500

9. Maslov L.N., Popov S.V., Mukhomedzyanov A.V., Naryzhnaya N.V., Voronkov N.S., Ryabov V.V. et al. Reperfusion cardiac injury: Receptors and the signaling mechanisms. Cur. Cardiol. Rev. 2022;18(5):63–79. https://doi.org/10.2174/1573403X18666220413121730

10. Reimer K.A., Jennings R.B. Verapamil in two reperfusion models of myocardial infarction. Temporary protection of severely ischemic myocardium without limitation of ultimate infarct size. Lab. Invest. 1984;51(6):655–666.

11. Kitamura K., Kangawa K., Kawamoto M., Ichiki Y., Nakamura S., Matsuo H. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 1993a;192(2):553–560. https://doi.org/10.1006/bbrc.1993.1451

12. Sugo S., Minamino N., Kangawa K., Miyamoto K., Kitamura K., Sakata J. et al. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 1994;201(3):1160–1166. https://doi.org/10.1006/bbrc.1994.1827

13. Kitamura K., Sakata J., Kangawa K., Kojima M., Matsuo H., Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem. Biophys. Res. Commun. 1993b; 194(2):720– 725. https://doi.org/10.1006/bbrc.1993.1881

14. Ishiyama Y., Kitamura K., Ichiki Y., Sakata J., Kida O., Kangawa K. et al. Haemodynamic responses to rat adrenomedullin in anaesthetized spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1995;22(9):614–618. https://doi.org/10.1111/j.1440-1681.1995.tb02075.x

15. Meeran K., O'Shea D., Upton P.D., Small C.J., Ghatei M.A., Byfield P.H. et al. Circulating adrenomedullin does not regulate systemic blood pressure but increases plasma prolactin after intravenous infusion in humans: a pharmacokinetic study. J. Clin. Endocrinol. Metab. 1997;82(1):95–100. https://doi.org/10.1210/jcem.82.1.3656

16. Sandoval D.A., D'Alessio D.A. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease. Physiol. Rev. 2015;95(2):513–548. https://doi.org/10.1152/physrev.00013.2014

17. Reed A.B., Lanman B.A., Holder J.R., Yang B.H., Ma J., Humphreys S.C. et al. Half-life extension of peptidic APJ agonists by N-terminal lipid conjugation. Bioorg. Med. Chem. Lett. 2020;30(21):127499. https://doi.org/10.1016/j.bmcl.2020.127499

18. Naot D., Musson D.S., Cornish J. The activity of peptides of the calcitonin family in bone. Physiol. Rev. 2019;99(1):781–805. https://doi.org/10.1152/physrev.00066.2017

19. Woolley M.J., Reynolds C.A., Simms J., Walker C.S., Mobarec J.C., Garelja M.L. et al. Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochem. Pharmacol. 2017;142:96–110. https://doi.org/10.1016/j.bcp.2017.07.005

20. Sekine N., Takano K., Kimata-Hayashi N., Kadowaki T., Fujita T. Adrenomedullin inhibits insulin exocytosis via pertussis toxin-sensitive G protein-coupled mechanism. Am. J. Physiol. Endocrinol. Metab. 2006;291(1):E9–E14. https://doi.org/10.1152/ajpendo.00213.2005

21. Mittra S. Bourreau J.P. Gs and Gi coupling of adrenomedullin in adult rat ventricular myocytes. Am J. Physiol. Heart Circ. Physiol. 2006;290(5):H1842–H1847. https://doi.org/10.1152/ajpheart.00388.2005

22. Berenguer C., Boudouresque F., Dussert C., Daniel L., Muracciole X., Grino M. et al. Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Oncogene. 2008;27(4):506–518. https://doi.org/10.1038/sj.onc.1210656

23. Bell D., Campbell M., McAleer S.F., Ferguson M., Donaghy L., Harbinson M.T. Endothelium-derived intermedin/adrenomedullin-2 protects human ventricular cardiomyocytes from ischaemiareoxygenation injury predominantly via the AM1 receptor. Peptides. 2016;76:1–13. https://doi.org/10.1016/j.peptides.2015.12.005

24. Xian X., Sakurai T., Kamiyoshi A., Ichikawa-Shindo Y., Tanaka M., Koyama T. et al. Vasoprotective activities of the adrenomedullin-RAMP2 system in endothelial cells. Endocrinology. 2017;158(5):1359–1372. https://doi.org/10.1210/en.2016-1531

25. Josiassen J., Frydland M., Holmvang L., Lerche Helgestad O.K., Okkels Jensen L., Goetze J.P. et al. Mortality in cardiogenic shock is stronger associated to clinical factors than contemporary biomarkers reflecting neurohormonal stress and inflammatory activation. Biomarkers. 2020;25(6):506–512. https://doi.org/10.1080/1354750X.2020.1795265

26. Nagaya N., Nishikimi T., Uematsu M., Yoshitomi Y., Miyao Y., Miyazaki S. et al. Plasma adrenomedullin as an indicator of prognosis after acute myocardial infarction. Heart. 1999;81(5):483–487. https://doi.org/10.1136/hrt.81.5.483

27. Hartopo A.B., Puspitawati I., Anggraeni V.Y. High level of mid-regional proadrenomedullin during ST-segment elevation myocardial infarction is an independent predictor of adverse cardiac events within 90-day follow-up. Medicina (Kaunas). 2022;58(7):861. https://doi.org/10.3390/medicina58070861

28. Vijay P., Szekely L., Aufiero T.X., Sharp T.G. Coronary sinus adrenomedullin rises in response to myocardial injury. Clin. Sci. (Lond). 1999;96(4):415–420. https://doi.org/10.1042/cs0960415

29. Oie E., Vinge L.E., Yndestad A., Sandberg C., Grøgaard H.K., Attramadal H. Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation. 2000;101(4):415–422. https://doi.org/10.1161/01.cir.101.4.415

30. Nagaya N., Nishikimi T., Yoshihara F., Horio T., Morimoto A., Kangawa K. Cardiac adrenomedullin gene expression and peptide accumulation after acute myocardial infarction in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278(4):R1019–R1026. https://doi.org/10.1152/ajpregu.2000.278.4.R1019

31. Belloni A.S., Guidolin D., Ceretta S., Bova S., Nussdorfer G.G. Acute effect of ischemia on adrenomedullin immunoreactivity in the rat heart: an immunocytochemical study. Int. J. Mol. Med. 2004;14(1):71–73. https://doi.org/10.3892/ijmm.14.1.71

32. Hinrichs S., Scherschel K., Krüger S., Neumann J.T., Schwarz M., Yan I. et al. Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proc. Natl. Acad. Sci USA. 2018;115(37):E8727–E8736. https://doi.org/1073/pnas.1721635115

33. Kato K., Yin H., Agata J., Yoshida H., Chao L., Chao J. Adrenomedullin gene delivery attenuates myocardial infarction and apoptosis after ischemia and reperfusion. Am J. Physiol. Heart. Circ. Physiol. 2003;285(4):H1506– H1514. https://doi.org/10.1152/ajpheart.00270.2003

34. de Miranda D.C., de Oliveira Faria G., Hermidorff M.M., Dos Santos Silva F.C., de Assis L.V.M., Isoldi M.C. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr. Vasc. Pharmacol. 2021;19(5):499–524. https://doi.org/10.2174/1570161119666201120160619

35. Yin H., Chao L., Chao J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension. 2004;43(1):109–116. https://doi.org/10.1161/01.HYP.0000103696.60047.55

36. An R., Xi C., Xu J., Liu Y., Zhang S., Wang Y. et al. Intramyocardial injection of recombinant adeno-associated viral vector coexpressing PR39/adrenomedullin enhances angiogenesis and reduces apoptosis in a rat myocardial infarction model. Oxid. Med. Cell. Longev. 2017;2017:1271670. https://doi.org/10.1155/2017/1271670

37. Naryzhnaya N.V., Maslov L.N., Derkachev I.A., Ma H., Zhang Y., Prasad N.R. et al. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J. Biomed. Res. 2022;37(4):230–254. https://doi.org/10.7555/JBR.36.20220125

38. Moradi M., Mousavi A., Emamgholipour Z., Giovannini J., Moghimi S., Peytam F. et al. Quinazoline-based VEGFR-2 inhibitors as potential antiangiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur. J. Med. Chem. 2023;259:115626. https://doi.org/10.1016/j.ejmech.2023.115626

39. Okumura H., Nagaya N., Itoh T., Okano I., Hino J., Mori K. et al. Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation. 2004;109(2):242–248. https://doi.org/10.1161/01.CIR.0000109214.30211.7C

40. Hamid S.A., Baxter G.F. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res. Cardiol. 2005;100(5):387– 396. https://doi.org/10.1007/s00395-005-0538-3

41. Hamid S.A., Baxter G.F. A critical cytoprotective role of endogenous adrenomedullin in acute myocardial infarction. J. Mol. Cell. Cardiol. 2006;41(2):360–363. https://doi.org/10.1016/j.yjmcc.2006.05.017

42. Hamid S.A., Totzeck M., Drexhage C., Thompson I., Fowkes R.C., Rassaf T. et al. Nitric oxide/cGMP signalling mediates the cardioprotective action of adrenomedullin in reperfused myocardium. Basic Res. Cardiol. 2010;105(2):257–266. https://doi.org/10.1007/s00395-009-0058-7

43. Nishida H., Sato T., Miyazaki M., Nakaya H. Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels. Cardiovasc. Res. 2008;77(2):398–405. https://doi.org/10.1016/j.cardiores.2007.07.015

44. Torigoe Y., Takahashi N., Hara M., Yoshimatsu H., Saikawa T. Adrenomedullin improves cardiac expression of heat-shock protein 72 and tolerance against ischemia/reperfusion injury in insulin-resistant rats. Endocrinology. 2009;150(3):1450–1455. https://doi.org/10.1210/en.2008-1052

45. Karakas M., Akin I., Burdelski C., Clemmensen P., Grahn H., Jarczak D. et al. Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, doubleblinded, placebo-controlled, multicentre trial. Lancet Respir. Med. 2022;10(3):247–254. https://doi.org/10.1016/S2213-2600(21)00439-2

46. Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Marutsuka K. et al. Beneficial effects of adrenomedullin on left ventricular remodeling after myocardial infarction in rats. Cardiovasc. Res. 2002;56(3):373–380. https://doi.org/10.1016/s0008-6363(02)00594-1

47. Okumura H., Nagaya N., Kangawa K. Adrenomedullin infusion during ischemia/reperfusion attenuates left ventricular remodeling and myocardial fibrosis in rats. Hypertens. Res. 2003;26_Suppl:S99–S104. https://doi.org/10.1291/hypres.26.s99

48. Nakamura R., Kato J., Kitamura K., Onitsuka H., Imamura T., Cao Y. et al. Adrenomedullin administration immediately after myocardial infarction ameliorates progression of heart failure in rats. Circulation. 2004;110(4):426–431. https://doi.org/10.1161/01.CIR.0000136085.34185.83

49. Dong W., Yu P., Zhang T., Zhu C., Qi J., Liang J. Adrenomedullin serves a role in the humoral pathway of delayed remote ischemic preconditioning via a hypoxia-inducible factor-1α-associated mechanism. Mol. Med. Rep. 2018;17(3):4547–4553. https://doi.org/10.3892/mmr.2018.8450

50. Dou L., Lu E., Tian D., Li F., Deng L., Zhang Y. Adrenomedullin induces cisplatin chemoresistance in ovarian cancer through reprogramming of glucose metabolism. J. Transl. Int. Med. 2023;11(2):169–177. https://doi.org/10.2478/jtim-2023-0091

51. Wang X., Jia J.H., Zhang M., Meng Q.S., Yan B.W., Ma Z.Y. et al. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J. 2023;37(10):e23143. https://doi.org/10.1096/fj.202300474R


Review

For citations:


Popov S.V., Maslov L.N., Mukhomedzyanov A.V., Slidnevskaya A.S., Kan A., Naryzhnaya N.V., Birulina Yu.G., Lasukova T.V., Podoxenov Yu.K. Peptides are cardioprotective drugs of the future. Adrenomedullin. Siberian Journal of Clinical and Experimental Medicine. 2025;40(1):11-18. (In Russ.) https://doi.org/10.29001/2073-8552-2025-40-1-11-18

Views: 255


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)