Signaling mechanisms of the cardioprotective effect of peptide and nonpeptide opioid receptor agonists in cardiac reperfusion (literature review)
https://doi.org/10.29001/2073-8552-2025-40-2-11-20
Abstract
In-hospital mortality in patients with acute myocardial infarction (AMI) is 5% 8% and has not decreased in recent years. One of the reasons for high mortality is reperfusion cardiac injury. It is quite obvious that there is an urgent need to develop drugs that can effectively reduce mortality in AMI. Opioids could become such drugs. The activation of peripheral µ2-, δ2-, κ1-opioid receptors (ORs) reduces the size of the infarction and improves contractility in reperfusion. Peripheral µ1-, δ1-, κ2ORs is not involved in the regulation of cardiac tolerance to reperfusion injury. PI3-kinase (phosphoinositide 3-kinase), ERK1/2 (extracellular signal-regulated kinase-1/2), Akt-kinase, epidermal growth factor receptor (EGRF) and soluble guanylyl cyclase (sGC) are involved in the cardioprotective effect of opioid postconditioning. Inhibition of GSK-3β (glycogen synthase kinase3β) and JNK (c-jun NH2 amino-terminal kinase) is involved in opioid postconditioning in contrast to Janus kinase-2 (JAK2) and protein kinase A (PKA). There is evidence that hemeoxygenase-1 (HO-1) and NO synthase (NOS) are also involved in opioidinduced postconditioning. Peptide and non-peptide µ2-, δ2-, κ1-OR agonists may become drugs for the treatment of AMI. Aim is to analyze signaling mechanisms of the cardioprotective effect of peptide and non-peptide opioid receptor agonists during cardiac reperfusion. A literature search was carried out in the PubMed database with queries “opioid receptors”, “opioid receptor agonists”, “cardioprotective effect of opioid receptor agonists”.
About the Authors
A. V. MukhomedzyanovRussian Federation
Alexander V. Mukhomedzyanov, Cand. Sci. (Med.), Research Scientist, Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
L. N. Maslov
Russian Federation
Leonid N. Maslov, Dr. Sci. (Med.), Professor, Head of the Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
S. V. Popov
Russian Federation
Sergey V. Popov, Dr. Sci. (Med.), Academician of the Russian Academy of Sciences, Director, Cardiology Research Institute
111a, Kievskaya str., Tomsk, 634012
A. Kan
Russian Federation
Arthur Kan, Senior Laboratory Assistant, Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
A. E. Grab
Russian Federation
Alexander E. Grab, Graduate Student, Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
N. V. Naryzhnaya
Russian Federation
Natalia V. Naryzhnaya, Dr. Sci. (Med.)., Leading Research Scientist, Laboratory of Experimental Cardiology
111a, Kievskaya str., Tomsk, 634012
References
1. Ashraf S., Farooq U., Shahbaz A., Khalique F., Ashraf M., Akmal R. et al. Factors responsible for worse outcomes in STEMI patients with early vs delayed treatment presenting in a tertiary care center in a third world country. Curr. Probl. Cardiol. 2024;49(1Pt B):102049. https://doi.org/10.1016/j.cpcardiol.2023.102049
2. McCartney P.J., Berry C. Redefining successful primary PCI. Eur. Heart J. Cardiovasc. Imaging. 2019;20(2):133–135. https://doi.org/10.1093/ehjci/jey159
3. Panteleev O.O., Ryabov V.V. Cardiogenic shock: What’s new? Siberian Journal of Clinical and Experimental Medicine. 2021;36(4):45–51. (In Russ.). https://doi.org/10.29001/2073-8552-2021-36-4-45-51
4. Maslov L.N., Khaliulin I., Oeltgen P.R., Naryzhnaya N.V., Pei J.M., Brown S.A. et al. Prospects for creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists. Med. Res. Rev. 2016;36(5):871–923. https://doi.org/10.1002/med.21395
5. Peart J.N., Gross E.R., Reichelt M.E., Hsu A., Headrick J.P., Gross G.J. Activation of kappa-opioid receptors at reperfusion affords cardioprotection in both rat and mouse hearts. Basic Res. Cardiol. 2008;103(5): 454–463. https://doi.org/10.1007/s00395-008-0726-z
6. Kim J.H., Jang Y.H., Chun K.J., Kim J., Park Y.H., Kim J.S. et al. Kappa-opioid receptor activation during reperfusion limits myocardial infarction via ERK1/2 activation in isolated rat hearts. Korean J. Anesthesiol. 2011;60(5):351–356. https://doi.org/10.4097/kjae.2011.60.5.351
7. Wu X., Zhang B., Fan R., Zhao L., Wang Y., Zhang S. et al. U50,488H inhibits neutrophil accumulation and TNF-alpha induction induced by ischemia-reperfusion in rat heart. Cytokine. 2011;56(2):503–507. https://doi.org/10.1016/j.cyto.2011.07.015
8. Wu Y., Wan J., Zhen W.Z., Chen L.F., Zhan J., Ke J.J. et al. The effect of butorphanol postconditioning on myocardial ischaemia reperfusion injury in rats. Interact. Cardiovasc. Thorac. Surg. 2014;18(3):308–312. https://doi.org/10.1093/icvts/ivt516
9. Huang L.H., Li J., Gu J.P., Qu M.X., Yu J., Wang Z.Y. Butorphanol attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis in mice. Eur. Rev. Med. Pharmacol. Sci. 2018;22(6):1819–1824. https://doi.org/10.26355/eurrev_201803_14601
10. Mukhomedzyanov A.V., Tsibulnikov S.Y., Maslov L.N. Comparative Analysis of infarct size limiting activity of κ-opioid receptor agonists in in vivo reperfused heart. Bull. Exp. Biol. Med. 2021;170(5):594–597. https://doi. org/10.1007/s10517-021-05113-7
11. Popov S.V., Mukhomedzyanov A.V., Tsibulnikov S.Y., Khaliulin I., Oeltgen P.R., Rajendra Prasad N. et al. Activation of peripheral opioid κ1 receptor prevents cardiac reperfusion injury. Physiol. Res. 2021;523–531. https://doi.org/10.33549/physiolres.934646
12. Tian X., Zhou Y., Wang Y., Zhang S., Feng J., Wang X. et al. Mitochondrial dysfunction and apoptosis are attenuated on kappa-opioid receptor activation through AMPK/GSK-3beta pathway after myocardial ischemia and reperfusion. J. Cardiovasc. Pharmacol. 2019;73(2):70–81. https://doi.org/10.1097/FJC.0000000000000635
13. Zhang W.P., Zong Q.F., Gao Q., Yu Y., Gu X.Y., Wang Y. et al. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol. Med. Rep. 2016;14(4):3992–3998. https://doi.org/10.3892/mmr.2016.5695
14. Wu S., Zhang L., Fan H., Huang Y., Zong Q., Gao Q. et al. PI3K/Akt signaling pathway mediates the protective effect of endomorphin-1 postconditioning against myocardial ischemia-reperfusion injury in rats. Nan Fang Yi Ke Da Xue Xue Bao. 2021;41(6):870–875. https://doi. org/10.12122/j.issn.1673-4254.2021.06.09
15. Huang Y.P., Yang T.H., Jin Z.Y., Wang Y., Ye H.W., Gao Q. et al. Role of mitochondrial permeability transition pore in mediating the effect of endomorphin-1 postconditioning against myocardial ischemia-reperfusion injury in rats. Nan Fang Yi Ke Da Xue Xue Bao. 2018;38(5):547–553. https://doi.org/10.3969/j.issn.1673-4254.2018.05.07
16. Mukhomedzyanov A.V., Maslov L.N., Tsibulnikov S.Y., Pei J.M. Endomorphins and β-endorphin do not affect heart tolerance to the pathogenic effect of reperfusion. Bull. Exp. Biol. Med. 2016;162(1):23–26. https://doi.org/10.1007/s10517-016-3535-7
17. He S.F., Jin S.Y., Yang W., Pan Y.L., Huang J., Zhang S.J. et al. Cardiac μ-opioid receptor contributes to opioid-induced cardioprotection in chronic heart failure. Br. J. Anaesth. 2018;121(1):26–37. https://doi.org/10.1016/j.bja.2017.11.110
18. Goldberg I.E., Rossi G.C., Letchworth S.R., Mathis J.P., Ryan-Moro J., Leventhal L. et al. Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J. Pharmacol. Exp. Ther. 1998;286(2):1007–1013. PMID: 9694962.
19. Wu Y., Gu E.W., Zhu Y., Zhang L., Liu X.Q., Fang W.P. Sufentanil limits the myocardial infarct size by preservation of the phosphorylated connexin 43. Int. Immunopharmacol. 2012;13(3):341–346. https://doi. org/10.1016/j.intimp.2012.04.009
20. Lei Y., Li X.X., Guo Z. Impact of timing of morphine treatment on infarct size in experimental animal model of acute myocardial ischemia and reperfusion. Eur. J. Pharmacol. 2022;928:175094. https://doi.org/10.1016/j.ejphar.2022.175094
21. Aitchison K.A., Baxter G.F., Moneeb Awan M., Smith R.M., Yellon D.M. et al. Opposing effects on infarction of delta and kappa opioid receptor activation in the isolated rat heart: implications for ischemic preconditioning. Basic Res. Cardiol. 2000;95(1):1–10. https://doi.org/10.1007/s003950050001
22. Zhu Y., Chi J., Cai S., Liu S., Yuan J., Xu H. et al. High-dose remifentanil exacerbates myocardial ischemia-reperfusion injury through activation of calcium-sensing receptor-mediated pyroptosis. Int. J. Med. Sci. 2023;20(12):1570–1583. https://doi.org/10.7150/ijms.83207
23. Kim J.H., Chun K.J., Park Y.H., Kim J., Kim J.S., Jang Y.H. et al. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts. Korean J. Anesthesiol. 2011;61(1):69. https://doi.org/10.4097/kjae.2011.61.1.69
24. Schultz J.E.J., Hsu A.K., Nagase H., Gross G.J. TAN-67, a δ 1 -opioid receptor agonist, reduces infarct size via activation of Gi/o proteins and KATP channels. Am. J. Physiol. Circ. Physiol. 1998;274(3):H909–Н914. https://doi.org/10.1152/ajpheart.1998.274.3.H909
25. Huh J., Gross G.J., Nagase H., Liang B.T. Protection of cardiac myocytes via δ 1 -opioid receptors, protein kinase C, and mitochondrial K ATP channels. Am. J. Physiol. Circ. Physiol. 2001;280(1):H377–Н383. https://doi.org/10.1152/ajpheart.2001.280.1.H377
26. Gross G. Role of opioids in acute and delayed preconditioning. J. Mol. Cell. Cardiol. 2003;35(7):709–718. https://doi.org/10.1016/S00222828(03)00135-4
27. Roques B., Gacel G., Daugé V., Baamonde A., Calenco G., Turcaud S. et al. Novel approaches in the development of new analgesics. Neurophysiol. Clin. Neurophysiol. 1990;20(5):369–387. https://doi.org/10.1016/S0987-7053(05)80205-9
28. Naryzhnaya N.V., Mukhomedzyanov A.V., Sirotina M., Maslov L.N., Kurbatov B.K., Gorbunov A.S. et al. δ-opioid receptor as a molecular target for increasing cardiac resistance to reperfusion in drug development. Biomedicines. 2023;11(7):1887. https://doi.org/10.3390/biomedicines11071887
29. Chen Z., Li T., Zhang B. Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J. Surg. Res. 2008;145(2):287– 294. https://doi.org/10.1016/j.jss.2007.07.020
30. Ha J.Y., Lee Y.C., Park S.J., Jang Y.H., Kim J.H. Remifentanil postconditioning has cross talk with adenosine receptors in the ischemic-reperfused rat heart. J. Surg. Res. 2015;195(1):37–43. https://doi. org/10.1016/j.jss.2015.01.010
31. Zhao S., Zhang C., Pi Z., Li R., Han P., Guo L. Oxycodone protects cardiomyocytes from ischemia-reperfusion-induced apoptosis via PI3K/ Akt pathway. Pharmazie. 2020;75(9):430–435. https://doi.org/10.1691/ph.2020.0497
32. Mourouzis I., Saranteas T., Perimenis P., Tesseromatis C., Kostopanagiotou G., Pantos C. et al. Morphine administration at reperfusion fails to improve postischaemic cardiac function but limits myocardial injury probably via heat-shock protein 27 phosphorylation. Eur. J. Anaesthesiol. 2009;26(7):572–581. https://doi.org/10.1097/EJA.0b013e32832a225a
33. Wong G.T.C., Li R., Jiang L.L., Irwin M.G. Remifentanil post-conditioning attenuates cardiac ischemia–reperfusion injury via κ or δ opioid receptor activation. Acta Anaesthesiol. Scand. 2010;54(4):510–518. https://doi.org/10.1111/j.1399-6576.2009.02145.x
34. Seewald M., Coles J.A., Sigg D.C., Iaizzo P.A. Featured article: Pharmacological postconditioning with delta opioid attenuates myocardial reperfusion injury in isolated porcine hearts. Exp. Biol. Med. 2017;242(9): 986–995. https://doi.org/10.1177/1535370216684041
35. Wang J., Gareri C., Rockman H.A. G-protein-coupled receptors in heart disease. Circ. Res. 2018; 123(6):716–735. https://doi.org/10.1161/CIRCRESAHA.118.311403
36. Gross G.J., Auchampach J.A. Reperfusion injury: does it exist? J. Mol. Cell. Cardiol. 2007;42(1):12–18. https://doi.org/10.1016/j. yjmcc.2006.09.009
37. Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R. et al. The infarct-reducing effect of the delta2 opioid receptor agonist deltorphin II: The molecular mechanism. Membranes (Basel). 2023;13(1):63. https://doi.org/10.3390/membranes13010063
38. Mukhomedzyanov A.V., Popov S.V., Maslov L.N., Diez E.R., Azev V.N. Role of PI3K, ERK1/2, and JAK2 kinases in the cardioprotective effect of deltorphin II during cardiac reperfusion. Bull. Exp. Biol. Med. 2023;175(1):17–19. https://doi.org/10.1007/s10517-023-05801-6
39. Förster K., Kuno A., Solenkova N., Felix S.B., Krieg T. The delta-opioid receptor agonist DADLE at reperfusion protects the heart through activation of pro-survival kinases via EGF receptor transactivation. Am. J. Physiol. Heart Circ. Physiol. 2007;293(3):H1604–H16048. https://doi.org/10.1152/ajpheart.00418.2007
40. Chen Z., Spahn D.R., Zhang X., Liu Y., Chu H., Liu Z. Morphine postconditioning protects against reperfusion injury: the role of protein kinase C-epsilon, extracellular signal-regulated kinase 1/2 and mitochondrial permeability transition pores. Cell. Physiol. Biochem. 2016;39(5):1930– 1940. https://doi.org/10.1159/000447890
41. Tao H., Nuo M., Min S. Sufentanil protects the rat myocardium against ischemia-reperfusion injury via activation of the ERK1/2 pathway. Cytotechnology. 2018;70(1):169–176. https://doi.org/10.1007/s10616017-0127-y
42. Xu J., Bian X., Zhao H., Sun Y., Tian Y., Li X. et al. Morphine prevents ischemia/reperfusion-induced myocardial mitochondrial damage by activating delta-opioid receptor/EGFR/ROS pathway. Cardiovasc. Drugs Ther. 2022;36(5):841–857. https://doi.org/10.1007/s10557-02107215-w
43. Chen Q.L., Gu E.W., Zhang L., Cao Y.Y., Zhu Y., Fang W.P. Diabetes mellitus abrogates the cardioprotection of sufentanil against ischaemia/ reperfusion injury by altering glycogen synthase kinase-3beta. Acta Anaesthesiol. Scand. 2013;57(2):236–242. https://doi.org/10.1111/j.13996576.2012.02748.x
44. Chen M., Liu Q., Chen L., Zhang L., Cheng X., Gu E. HDAC3 mediates cardioprotection of remifentanil postconditioning by targeting GSK3β in H9c2 cardiomyocytes in hypoxia/reoxygenation injury. Shock. 2018;50(2):240–247. https://doi.org/10.1097/SHK.0000000000001008
45. Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ. Res. 2015;116(4): 674–699. https://doi.org/10.1161/CIRCRESAHA.116.305348
46. Chen Z., Zhang X., Liu Y., Liu Z. Morphine postconditioning protects against reperfusion injury via inhibiting JNK/p38 MAPK and mitochondrial permeability transition pores signaling pathways. Cell. Physiol. Biochem. 2016;39(1):61–70. https://doi.org/10.1159/000445605
47. Tsutsumi Y.M., Yokoyama T., Horikawa Y., Roth D.M., Patel H.H. Reactive oxygen species trigger ischemic and pharmacological postconditioning: in vivo and in vitro characterization. Life Sci. 2007;81(15): 1223–1227. https://doi.org/10.1016/j.lfs.2007.08.031
48. Patel H.H., Hsu A., Gross G.J. Delayed cardioprotection is mediated via a non-peptide δ opioid agonist, SNC-121, independent of opioid receptor stimulation. Basic Res. Cardiol. 2004;99(1):38–45. https://doi.org/10.1007/s00395-003-0438-3
49. Kunecki M., Roleder T., Biernat J., Kukla P., Tomkiewicz-Pająk L., Deja M.A. et al. Opioidergic conditioning of the human heart muscle in nitric oxide-dependent mechanism. Adv. Clin. Exp. Med. 2018;27(8): 1069–1073. https://doi.org/10.17219/acem/70192
50. Tong G., Zhang B., Zhou X., Zhao J., Sun Z., Tao Y. et al. Kappa-opioid agonist U50,488H-mediated protection against heart failure following myocardial ischemia/reperfusion: Dual roles of heme oxygenase-1. Cell. Physiol. Biochem. 2016;39(6):2158–2172. https://doi.org/10.1159/000447911
Review
For citations:
Mukhomedzyanov A.V., Maslov L.N., Popov S.V., Kan A., Grab A.E., Naryzhnaya N.V. Signaling mechanisms of the cardioprotective effect of peptide and nonpeptide opioid receptor agonists in cardiac reperfusion (literature review). Siberian Journal of Clinical and Experimental Medicine. 2025;40(2):11-20. (In Russ.) https://doi.org/10.29001/2073-8552-2025-40-2-11-20