Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Application of artificial intelligence in pathology

https://doi.org/10.29001/2073-8552-2025-40-2-211-217

Abstract

The development of digital technologies and computer vision algorithms extends the possibilities of Artificial Intelligence application in pathology. Neural networks based on deep learning are being successfully developed and used to perform tasks related to the diagnosis and classification of tumors, identification of immunohistochemical markers and morphometry. The use of Artificial Intelligence not only contributes to the objectification of the diagnostic process, but also reduces the burden on the pathologists, allowing them to concentrate on more complex cases. Despite this, there are limitations to the introduction of neural networks into routine pathology practice, including financial and legal difficulties, as well as a distrustful attitude towards automatic diagnosis among doctors and patients. The literature review provides information on Artificial Intelligence, machine learning and neural network architecture, as well as their integration into the practice of a pathologist. The software products used for quantitative morphological studies, diagnosis and prognosis of diseases are listed. The set of developed AI-based programs indicates a significant interest and relevance of their use in pathological and anatomical practice and opens new frontiers in personalized medicine.

About the Authors

D. S. Shvorob
M. Gorky Donetsk State Medical University
Russian Federation

Danil S. Shvorob, Assistant Professor, Pathological Anatomy Department

16, Il’icha ave., Donetsk, 283003, Donetsk People's Republic



T. A. Vasyaeva
Donetsk National Technical University
Russian Federation

Tatyana A. Vasyaeva, Ph.D. in Engineering, Associate Professor, Dean of the Faculty

58, Artema str., Donetsk, 283001, Donetsk People's Republic



E. A. Khriukin
Donetsk National Technical University
Russian Federation

Evgeniy A. Khriukin, Graduate Student, Automated Control Systems Department 

58, Artema str., Donetsk, 283001, Donetsk People's Republic



A. V. Papakina
M. Gorky Donetsk State Medical University
Russian Federation

Anna V. Papakina, 6th-year student

16, Il’icha ave., Donetsk, 283003, Donetsk People's Republic



References

1. Hunter B., Hindocha S., Lee R.W. The role of artificial intelligence in early cancer diagnosis. Cancers (Basel). 2022;14(6):1524. https://doi.org/10.3390/cancers14061524

2. Fang B., Yu J., Chen Z., Osman A.I., Farghali M., Ihara I et al. Artificial intelligence for waste management in smart cities: a review. Environ. Chem. Lett. 2023;1–31. Online ahead of print. https://doi.org/10.1007/s10311-023-01604-3

3. Onyema E.M., Almuzaini K.K., Onu F.U., Verma D., Gregory U.S., Puttaramaiah M. et al. Prospects and challenges of using machine learning for academic forecasting. Comput. Intell. Neurosci. 2022;5624475. https://doi.org/10.1155/2022/5624475

4. Limanovskaya O.V., Alferieva T.I. The Principles of machine learning: a tutorial. Ekaterinburg: Ural Un. Press; 2020:88 (In Russ.) URL: https://elar.urfu.ru/bitstream/10995/88687/1/978-5-7996-3015-7_2020.pdf (05.11.2024).

5. Du X.L., Li W.B., Hu B.J. Application of artificial intelligence in ophthalmology. Int. J. Ophthalmol. 2018;11(9):1555–1561. https://doi.org/10.18240/ijo.2018.09.21

6. Esteva A., Kuprel B., Novoa R.A., Ko J., Swetter S.M., Blau H.M. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–118. https://doi.org/10.1038/ nature21056

7. Utkin L.V., Meldo A.A., Ipatov O.S., Ryabinin M.A. Medical artificial intelligence system using an example of the lung cancer diagnosis. Izv SFedU. Eng Sci. 2018;(8):241–249. (In Russ.). https://doi.org/10.23683/2311-3103-2018-8-241-249

8. Dietz R.L., Hartman D.J., Zheng L., Wiley C., Pantanowitz L. Review of the use of telepathology for intraoperative consultation. Expert Rev. Med. Devices. 2018;15(12):883–890. https://doi.org/10.1080/17434440.2018.1549987

9. Wong S.T. Is pathology prepared for the adoption of artificial intelligence? Cancer Cytopathol. 2018;126(6):373–375. https://doi.org/10.1002/cncy.21994

10. Shafi S., Parwani A.V. Artificial intelligence in diagnostic pathology. Diagn. Pathol. 2023;18(1):109. https://doi.org/10.1186/s13000-02301375-z

11. Røge R., Riber-Hansen R., Nielsen S., Vyberg M. Proliferation assessment in breast carcinomas using digital image analysis based on virtual Ki67/cytokeratin double staining. Breast Cancer Res. Treat. 2016;158(1):11–19. https://doi.org/10.1007/s10549-016-3852-6

12. Stålhammar G., Fuentes Martinez N., Lippert M., Tobin N.P., Mølholm I., Kis L. et al. Digital image analysis outperforms manual biomarker assessment in breast cancer. Mod. Pathol. 2016;29(4):318–329. https://doi.org/10.1038/modpathol.2016.34

13. Araújo T., Aresta G., Castro E., Rouco J., Aguiar P., Eloy C. et al. Classification of breast cancer histology images using convolutional neural networks. PLoS ONE. 2017;12(6):e0177544. https://doi.org/10.1371/journal.pone.0177544

14. Bejnordi B.E., Mullooly M., Pfeiffer R.M., Fan S., Vacek P.M., Weaver D.L. et al. Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies. Mod. Pathol. 2018;31(10):1502–1512. https://doi.org/10.1038/s41379-0180073-z

15. Mercan C., Aksoy S., Mercan E., Shapiro L.G., Weaver D.L., Elmore J.G. Multi-instance multi-label learning for multi-class classification of whole slide breast histopathology images. IEEE Trans. Med. Imaging. 2018;37(1):316–325. https://doi.org/10.1109/TMI.2017.2758580

16. Yoshida H., Shimazu T., Kiyuna T., Marugame A., Yamashita Y., Cosatto E. et al. Automated histological classification of whole-slide images of gastric biopsy specimens. Gastric Cancer. 2018;21(2):249– 257. https://doi.org/10.1007/s10120-017-0731-8

17. Wang S., Zhu Y., Yu L., Chen H., Lin H., Wan X., Fan X. et al. RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification. Med. Image Anal. 2019;58:101549. https://doi.org/10.1016/j.media.2019.101549

18. Gertych A., Swiderska-Chadaj Z., Ma Z., Ing N., Markiewicz T., Cierniak S. et al. Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep. 2019;9(1):1483. https://doi.org/10.1038/s41598018-37638-9

19. Wei J.W., Tafe L.J., Linnik Y.A., Vaickus L.J., Tomita N., Hassanpour S. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Sci. Rep. 2019;9(1):3358. https://doi.org/10.1038/s41598-019-40041-7

20. Bulten W., Kartasalo K., Chen P.C., Strom P., Pinckaers H., Nagpal K. et al. Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge. Nat. Med. 2022;28(1):154–163. https://doi.org/10.1038/s41591-021-01620-2

21. Wild P.J., Catto J.W., Abbod M.F., Linkens D.A., Herr A., Pilarsky C. et al. Artificial intelligence and bladder cancer arrays. Verh. Dtsch. Ges. Pathol. 2007;91:308–319.

22. Yu K.H., Zhang C., Berry G.J., Altman R.B., Re C., Rubin D.L. et al. Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nat. Commun. 2016;7:12474. https://doi.org/10.1038/ncomms12474

23. Kumar N., Tafe L.J., Higgins J.H., Peterson J.D., de Abreu F.B., Deharvengt S.J. et al. Identifying associations between somatic mutations and clinicopathologic findings in lung cancer pathology reports. Methods Inf. Med. 2018;57(1):63–73. https://doi.org/10.3414/ME17-01-0039

24. Steiner D.F., MacDonald R., Liu Y., Truszkowski P., Hipp J.D., Gammage C. et al. Impact of deep learning assistance on the Histopathologic review of lymph nodes for metastatic breast Cancer. Am. J. Surg. Pathol. 2018;42(12):1636–1646. https://doi.org/10.1097/PAS.0000000000001151

25. Bejnordi B.E., Veta M., van Diest P.J., van Ginneken B., Karssemeijer N., Litjens G. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA. 2017;318(22):2199–2210. https://doi.org/10.1001/jama.2017.14585

26. Yuan Y. Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer. J. R. Soc. Interface. 2015;12(103):20141153. https://doi.org/10.1098/rsif.2014.1153

27. Bychkov D., Linder N., Turkki R., Nordling S., Kovanen P.E., Verrill C. et al. Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. Rep. 2018;8(1):3395. https://doi.org/10.1038/s41598-01821758-3

28. Geessink O.G., Baidoshvili A., Klaase J.M., Bejnordi B.E., Litjens G.J., van Pelt G.W. et al. Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer. Cell Oncol. 2019;42(3):331–41. https://doi.org/10.1007/s13402-019-00429-z

29. Hegde N., Hipp J.D., Liu Y., Emmert-Buck M., Reif E., Smilkov D. et al. Similar image search for histopathology: SMILY. NPJ Digit Med. 2019:2:56. https://doi.org/10.1038/s41746-019-0131-z

30. Lujan G.M., Savage J., Shana'ah A., Yearsley M., Thomas D., Allenby P. Digital pathology initiatives and experience of a large academic institution during the Coronavirus Disease 2019 (COVID-19) pandemic. Arch. Pathol. Lab. Med. 2021;145(9):1051–1061. https://doi.org/10.5858/arpa.2020-0715-SA

31. Chernykh E.E. Artificial intelligence in the Russian healthcare sector: current situation and criminal and legal risks. Vestnik of St. Petersburg Univ of the Min of Int Aff of Russia. 2020;4(88):127–131. (In Russ.). https://doi.org/10.35750/2071-8284-2020-4-127-131

32. Zhukov O.B., Scheplev P.A., Ignatiev A.V. Artificial intelligence in medicine: from hybrid studies and clinical validation to development of application models. Andr and Gen Surg. 2019;20(3):00-00. (In Russ.). https://doi.org/10.17650/2070-9781-2019-20-2-00-00

33. Campanella G., Hanna M.G., Geneslaw L., Miraflor A., Silva V.W., Busam K.J. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019;25(8):1301–1309. https://doi.org/10.1038/s41591-019-0508-1


Review

For citations:


Shvorob D.S., Vasyaeva T.A., Khriukin E.A., Papakina A.V. Application of artificial intelligence in pathology. Siberian Journal of Clinical and Experimental Medicine. 2025;40(2):211-217. (In Russ.) https://doi.org/10.29001/2073-8552-2025-40-2-211-217

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)