Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

ANALYSIS OF THE ASSOCIATION OF THE METHYLATION LEVELS OF MIR10B AND MIR21 GENES IN BLOOD LEUKOCYTES WITH ADVANCED CAROTID ATHEROSCLEROSIS

https://doi.org/10.29001/2073-8552-2018-33-2-77-82

Abstract

Complications of atherosclerosis remain the leading cause of morbidity and mortality worldwide. MiRNAs are short regulatory molecules that are involved in all processes of pathogenesis. Expression of miRNAs is regulated by DNA methylation. Methylation and/or expression of MIR10B and MIR21 genes are known to vary in atherosclerotic tissues of the arteries, but there is no data about the changes in the methylation levels of these genes in blood leukocytes and their association with atherosclerosis risk factors.

Objective. To evaluate the association of methylation levels of MIR10B and MIR21 genes in the blood leukocytes with risk factors and pathogenetically significant traits of carotid atherosclerosis.

Material and Methods. DNA for the study was extracted from the samples of blood leukocytes of 122 patients with advanced carotid atherosclerosis as well as from blood leukocytes of 135 individuals in the control group. The DNA methylation level was analyzed by bisulfite pyrosequencing.

Results. The methylation level of the MIR10B and MIR21 genes in leukocytes of patients with atherosclerosis is higher than in the leukocytes of the control group. In leukocytes of patients with carotid atherosclerosis the methylation level of the MIR21 gene promoter was correlated with type 2 diabetes and serum cholesterol level, and the methylation level of the coding region of the MIR10B gene was correlated with smoking.

Conclusions. The level of DNA methylation in the regions of MIR10B and MIR21 genes in blood leukocytes is associated with the risk of advanced atherosclerosis of the carotid arteries.

 

About the Authors

Iu. A. Koroleva
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Koroleva Iuliia A. - Junior Researcher, Laboratory of Population Genetics, Research Institute of Medical Genetics, TNRMC, RAS.

10, Nab. Ushaiki str., Tomsk, 634050



A. A. Zarubin
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University
Russian Federation

Zarubin Aleksei A. - Undergraduate Student, Medical and Biological Faculty, , SSMU; Research Assistant, Laboratory of Evolution Genetics, RIMG, TNRMC, RAS.

10, Nab. Ushaiki str., Tomsk, 634050; 2, Moskovsky tract, Tomsk, 634050



A. V. Markov
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Markov Anton V. - Cand. Sci. (Med.), Researcher, Laboratory of Population Genetics, RIMG, TNRMC, RAS.

10, Nab. Ushaiki str., Tomsk, 634050



A. N. Kazancev
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Kazancev Anton N. - Junior Researcher, Laboratory of Reconstructive Surgery, Department of Multifocal Atherosclerosis, RICICD.

6, Sosnoviy bulv., Kemerovo, 650000



O. L. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Barbarash Olga L. - Dr. Sci. (Med.), Professor, Corresponding Member of RAS, Director of RICICD.

6, Sosnoviy bulv., Kemerovo, 650000



M. S. Nazarenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University; Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Nazarenko Maria S. - Cand. Sci. (Med.), Head of Laboratory of Population Genetics, RIMG, TNRMC, RAS; Assistant Professor, Department of Medical Genetics, SSMU; Leading Researcher, Laboratory for Genomic Medicine, Division of Experimental and Clinical Cardiology, RICICD.

10, Nab. Ushaiki str., Tomsk, 634050; 2, Moskovsky tract, Tomsk, 634050; 6, Sosnoviy bulv., Kemerovo, 650000



References

1. Madrigal-Matute J., Rotllan N., Aranda J. F., Fernández-Hernando C. MicroRNAs and atherosclerosis. Curr. Atheroscler. Rep. 2013; 15(5): 322–335. DOI: 10.1007/s11883-013-0322-z.

2. Kumar S., Kim C. W., Simmons R. D., Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler. Thromb. Vasc. Biol. 2014; 34: 2206–2216. DOI: 10.1161/ATVBAHA.114.303425.

3. Andreou I., Sun X., Stone P. H., Edelman E. R., Feinberg M. W. MiRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol. Med. 2015; 21:307–318. DOI: 10.1016/j.molmed.2015.02.003.

4. Volný O., Kašičková L., Coufalová D., Cimflová P., Novák J. MicroRNAs in Cerebrovascular Disease. Adv. Exp. Med. Biol. 2015; 888: 155–195. DOI: 0.1007/978-3-319-22671-2_9.

5. Feinberg M. W., Moore K. J. MicroRNA Regulation of Atherosclerosis. Circ. Res. 2016; 118(4): 703–720. DOI: 10.1161/CIRCRESAHA.115.306300.

6. Santovito D., Egea V., Weber C. Small but smart: MicroRNAs orchestrate atherosclerosis development and progression. Biochim. Biophys. Acta. 2016; 1861(12 Pt B): 2075–2086. DOI: 10.1016/j.bbalip.2015.12.013.

7. Fang Z., Du R., Edwards A., Flemington E. K., Zhang K. The sequence structures of human microRNA molecules and their implications. PLoS One. 2013; 8(1): e54215. DOI: 10.1371/journal.pone.0054215.

8. Piletič K., Kunej T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 2016; 90(10): 2405–2419. DOI: 10.1007/s00204-016-1815-7.

9. Friedman R. C., Farh K. K., Burge C. B., Bartel D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19: 92–105. DOI: 10.1101/gr.082701.108.

10. Loginov V. I., Braga E. A., Rykov S. V., Fridman M. V. Methylation of miRNA genes and oncogenesis. Biochemistry (Moscow). 2015; 80(2): 145–162. DOI: 10.1134/S0006297915020029.

11. Kurozumi S., Yamaguchi Y., Kurosumi M., Ohira M., Matsumoto H., Horiguchi J. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J. Hum. Genet. 2017; 62(1): 15–24. DOI: 10.1038/jhg.2016.89.

12. Nazarenko M. S., Markov, Lebedev I. N., Freidin M. B., Sleptcov A. A., Koroleva I. A., Frolov A. V., Popov V. A., Barbarash O. L. Puzyrev, V. P. A comparison of genome-wide DNA methylation patterns between different vascular tissues from patients with coronary heart disease. PLoS One; 2015, 10(4): e0122601. DOI: 10.1371/journal.pone.0122601.

13. Chhabra R. MiRNA and methylation: a multifaceted liaison. Chembiochem. 2015; 16(2): 195–203. DOI: 10.1002/cbic.201402449.

14. Kim K., Lee H. C., Park J. L., Kim M., Kim S. Y., Noh S. M., Song K.-S., Kim J. C., Kim Y. S. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics. 2011; 6(6): 740–751. DOI: 10.4161/epi.6.6.15874.

15. Adams A. T., Kennedy N. A., Hansen R., Ventham N. T., O’Leary K. R., Drummond H. E., Noble C. L., El-Omar E., Russell R. K., Wilson D. C., Nimmo E. R., Satsangi J. Two-stage genome-wide methylation profiling in childhood-onset Crohn’s Disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci. Inflamm. Bowel Dis. 2014; 20(10): 1784–1793. DOI: 10.1097/MIB.0000000000000179.

16. Baer C., Claus R., Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013; 73(2): 473–477. DOI: 10.1158/0008-5472.CAN-12-3731.

17. Cipollone F., Felicioni L., Sarzani R., Ucchino S., Spigonardo F., Mandolini C., Malatesta S., Bucci M., Mammarella C., Santovito D., de Lutiis F., Marchetti A., Mezzetti A., Buttitta F. A unique microRNA signature associated with plaque instability in humans. Stroke. 2011; 42(9): 2556–2563. DOI: 10.1161/STROKEAHA.110.597575.

18. Fan X., Wang E., Wang X., Cong X., Chen X. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp. Mol. Pathol. 2014; 96(2): 242–249. DOI: 10.1016/j.yexmp.2014.02.009.

19. Raitoharju E., Lyytikäinen L. P., Levula M., Oksala N., Mennander A., Tarkka M., Klopp N., Illig T., Kähönen M., Karhunen P. J., Laaksonen R., Lehtimäki T. miR-21, miR-210, miR34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011; 219(1): 211–217. DOI: 10.1016/j.atherosclerosis.2011.07.020.

20. Markov A. V., Nazarenko M. S., Koroleva Yu. A., Lebedev I. N., Sleptcov A. A., Frolov A. V., Popov V. A., Barbarash O. L., Barbarash L. S., Puzyrev V. P. DNA methylation level within the HOXD4 promoter region in patients with atherosclerosis. Meditsinskaya genetika = Medical genetics. 2014; 13(1): 39–42 (In Russ).


Review

For citations:


Koroleva I.A., Zarubin A.A., Markov A.V., Kazancev A.N., Barbarash O.L., Nazarenko M.S. ANALYSIS OF THE ASSOCIATION OF THE METHYLATION LEVELS OF MIR10B AND MIR21 GENES IN BLOOD LEUKOCYTES WITH ADVANCED CAROTID ATHEROSCLEROSIS. Siberian Journal of Clinical and Experimental Medicine. 2018;33(2):77-82. (In Russ.) https://doi.org/10.29001/2073-8552-2018-33-2-77-82

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)