Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

PLEIOTROPIC ENZYMES OF APOPTOSIS AND SYNAPTIC PLASTICITY IN ALBINO RAT HIPPOCAMPUS AFTER OCCLUSION OF COMMON CAROTID ARTERIES

https://doi.org/10.29001/2073-8552-2018-33-3-102-110

Abstract

Aim: the aim of the study was to investigate the pleiotropic properties of the apoptotic enzyme caspase-3 and its associations with the synaptic plasticity of the hippocampus of albino rats in healthy animals and in rats after 20-min occlusion of the common carotid arteries.
Material and Methods. Total numerical density of neurons, ultrastructure of synapses, and area of immunohistochemically positive hippocampal synaptic terminals of CA1 stratum radiatum and stratum lucidum CA3 were studied by the methods of optical microscopy (hematoxylin and eosin stain), electron microscopy (uranyl acetate and lead citrate as contrast agents), immunohistochemistry (MAP2, synaptophysin, caspase-3, p53, and bcl-2), and morphometry in the brains of intact rats (n=5) and in animals after acute ischemia at day 1 (n=5), 3 (n=5), 7 (n=5), 14 (n=5), and 30 (n=25).
Results and Discussion. The study showed that 33.0% of pyramidal neurons in CA1 region and 17.4% of those in CA3 region underwent irreversible damage within 30 days of the post-ischemic period. Among the irreversibly damaged neurons, the cells with signs of coagulative-ischemic necrosis prevailed. In animals subject to ischemia, the relative area of synaptophysin-positive material initially decreased (at day 1) and then recovered (at days 3, 7). We found that caspase-3 colocalized with synaptophysin, which was especially evident in the giant synapses of the stratum lucidum of the hippocampal CA3 region. In the neurosomes of the hippocampal pyramidal cells, caspase-3 was not detected. However, this enzyme was found in the terminals of the axo-dendritic, axo-spine, and axo-somatic synapses. In the course of th e post-ischemic period, the most pronounced changes in the expression of caspase-3 were observed in the stratum radiatum of the CA1 field. Apoptosis regulatory proteins (p53, bcl-2) were detected in the individual neurons. In this regard, caspase-3 should be viewed in the context of its pleiotropy and involvement in the adaptation and recovery processes due to post-ischemic activation of neuroplasticity at the level of axons and synapses.
Conclusion. After acute ischemia caused by 20-min occlusion of the common carotid arteries, the activation of caspase-3 contributes to ischemic preconditioning and neuroprotection.

About the Authors

D. V. Avdeev
Omsk State Medical University
Russian Federation

Cand. Sci. (Vet.), Associate Professor of the Department of Life Safety and Disaster Medicine

12, Lenin str., Omsk, 644099, Russian Federation



V. A. Akulinin
Omsk State Medical University
Russian Federation

Dr. Sci. (Med.), Professor, Head of the Department of Histology, Cytology, and Embryology

12, Lenin str., Omsk, 644099, Russian Federation



A. S. Stepanov
Omsk State Medical University
Russian Federation

Full-Time Graduate Student of the Department of Histology, Cytology, and Embryology

12, Lenin str., Omsk, 644099, Russian Federation



A. V. Gorbunova
Omsk State Medical University
Russian Federation

Resident Physician of the Oncology and Radiation Therapy Department of DPO

12, Lenin str., Omsk, 644099, Russian Federation



S. S. Stepanov
Omsk State Medical University
Russian Federation

Dr. Sci. (Med.), Senior Researcher of the Department of Histology, Cytology, and Embryology

12, Lenin str., Omsk, 644099, Russian Federation



References

1. Zeng Y. S., Xu Z. C. Co-existence of necrosis and apoptosis in rat hippocampus following transient forebrain ischemia. Neurosci. Res. 2000; 37: 113–125. DOI: 10.1016/s0168-0102(00)00107-3.

2. Winkelmann E. R., Charcansky A., Faccioni-Heuser M. C., Netto C. A., Achaval M. An ultrastructural analysis of cellular death in the CA1 field in the rat hippocampus after transient forebrain ischemia followed by 2, 4 and 10 days of reperfusion. Anat. Embryol. 2006; 211: 423–434. DOI: 10.1007/s00429-006-0095-z.

3. Wirth C., Brandt U., Hunte C., Zickermann V. Structure and function of mitochondrial complex I. Biochim. Biophys. Acta. 2016; 1857(7): 902–914. DOI: 10.1016/j.bbabio.2016.02.013.

4. Muller G. J., Stadelmann C., Bastholm L., Elling F., Lassmann H., Johansen F. F. Ischemia leads to apoptosis-and necrosis-like neuron death in the ischemic rat hippocampus. Brain Pathol. 2004; 14(4): 415–424. DOI: 10.1111/j.1750-3639.2004.tb00085.x.

5. Baron J.-C., Yamauchi H., Fujioka M., Endres M. Selective neuronal loss in ischemic stroke and cerebrovascular disease. J. Cereb. Blood Flow Metab. 2014; 34: 2–18. DOI: 10.1038/jcbfm.2013.188.

6. Maurer L. L., Philbert M. A. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites. Handb. Clin. Neurol. 2015; 131: 61–70. DOI: 10.1016/B978-0-444-62627-1.00005-6.

7. Nikonenko A. G., Radenovic L., Andjus P. R., Skibo G. G. Structural features of ischemic damage in the hippocampus. The Anatomical Record. 2009; 292: 1914–1921. DOI: 10.1002/ar.20969.

8. Shetty A. K. Hippocampal injury-induced cognitive and mood dysfunction, altered neurogenesis, and epilepsy: can early neural stem cell grafting intervention provide protection? Epilepsy Behav. 2014; 38: 117–124. DOI: 10.1016/j.yebeh.2013.12.001.

9. Stepanov A. S., Akulinin V. A., Stepanov S. S., Avdeev D. B. Cellular systems for the recovery and utilization of damaged brain neurons in white rats after a 20-minute occlusion of common carotid arteries. Rossijskij fiziologicheskij zhurnal im. I. M. Sechenova = Russian Journal of Physiology. THEM. Sechenov. 2017; 103(10): 1135–1147 (In Russ).

10. Semchenko V. V., Stepanov S. S., Bogolepov N. N. Synaptic plasticity of the brain (fundamental and applied aspects). 2nd ed. Moscow: 2014: 408 (In Russ).

11. Stepanov A. S., Avdeev D. B., Akulinin V. A., Stepanov S. S. Structural and functional changes in neocortical neurons of white rats after a 20-minute occlusion of common carotid arteries. Patologicheskaya fiziologiya i ehksperimental’naya terapiya = Pathological physiology and experimental therapy. 2018; 62(2): 30–38 (In Russ).

12. Yakovlev A. A., Gulyaeva N. V. Pleiotropic functions of brain proteinases: methodical approaches to research and search for substrates for caspase. Biohimiya = Biochemistry. 2011; 76(10): 1325–1334. DOI: 10.1134/s0006297911100014.

13. Yakovlev A. A., Gulyaeva N. V. Pre-conditioning of brain cells to pathological effects: protease involvement (review). Biohimiya = Biochemistry. 2015; 80(2): 204–213.

14. McLaughlin B., Hartnett K. A., Erhardt J. A., Legos J. J., White R. F.,Barone F. C., Aizenman E. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc. Natl. Acad. Sci. USA. 2003; 100: 715–720. DOI: 10.1073/pnas.0232966100.

15. Launay S., Hermine O., Fontenay M., Kroemer G., Solary E., Garrido C. Vital functions for lethal caspases. Oncogene. 2005; 24: 5137–5148. DOI: 10.1038/sj.onc.1208524.

16. Khalil H., Peltzer N., Walicki J., Yang J.-Y., Dubuis G., Gardiol N., Held W., Bigliardi P., Marsland B., Liaudet L., Widmann Ch. Caspase 3 protects stressed organs against cell death. Mol. Cell Biol. 2012; 32: 4523–4533. DOI: 10.1128/mcb.00774-12.

17. Korpachev V. G., Lysenkov S. P., Tel’ L. Z. Modeling of clinical death and postresuscitation disease in rats. Patologicheskaya fiziologiya i ehksperimental’naya terapiya = Pathological physiology and experimental therapy. 1982; 3: 78–80 (In Russ).

18. Buresh Y. A., Bureshova O., H’yuston D. P. Techniques and basic experiments on the study of the brain and behavior. Moscow: Vysshaya shkola; 1991: 399 (In Russ).

19. Vasil’ev Yu. G., Vol’hin I. A., Danilova T. G., Berestov D. S. Evaluation of neurological status of domestic and laboratory animals. Mezhdunarodnyj vestnik veterinarii = International Veterinary Journal of Veterinary Medicine. 2013; 3: 52–55 (In Russ).

20. Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 5th ed. San Diego: Elsevier Academic Press; 2005: 367.

21. Akulinin V. A., Stepanov S. S., Avdeev D. B., Stepanov A. S., Razumovskij V. S., Artyuhov A. V., Gorbunova A. V. Features of changes in the neocortex, archcortex and amygdala of white rats after acute ischemia. Zhurnal anatomiya i gistopatologiya = Journal of Anatomy and Histopathology. 2018; 7(2): 9–17 (In Russ). DOI: 10.18499/2225-7357-2018-7-2-9-17.

22. Borovikov V. Statistica. The art of analyzing data on a computer. 2nd ed. St. Petersburg: Piter; 2003: 688 (In Russ).


Review

For citations:


Avdeev D.V., Akulinin V.A., Stepanov A.S., Gorbunova A.V., Stepanov S.S. PLEIOTROPIC ENZYMES OF APOPTOSIS AND SYNAPTIC PLASTICITY IN ALBINO RAT HIPPOCAMPUS AFTER OCCLUSION OF COMMON CAROTID ARTERIES. Siberian Journal of Clinical and Experimental Medicine. 2018;33(3):102-110. (In Russ.) https://doi.org/10.29001/2073-8552-2018-33-3-102-110

Views: 701


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)