Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Renal denervation in 2019

https://doi.org/10.29001/2073-8552-2019-34-3-21-32

Abstract

In the 21st century, hypertension remains a major health threat to the adult population worldwide, despite the phenomenal progress in the development of antihypertensive pharmacotherapy. Currently, the rate of pharmacological control of hypertension barely exceeds 50%. Indeed, pharmacotherapy is fundamentally limited by pharmacological/pharmacokinetic tolerance (adaptation) to the drugs as well as by non-compliance of patients with treatment regimens due to depletion of their psychophysiological function of self-control. Renal denervation (RDN) is a new non-drug treatment of hypertension. Renal denervation consists of a mini-electrosurgery on the renal sympathetic system where a catheter ablation is used to create a permanent block of conduction through the renal nerves. This procedure, in accordance with the function of the renal adrenergic receptors, increases glomerular filtration, reduces tubular water reabsorption, and inhibits glomerular secretion of renin. After the over-disputed failure of the early version of RDN using the first-generation single-electrode catheter system in the SYMPLICITY HTN-3 study, therapy was virtually reinvented with a new three-dimensional multi-electrode design and an anatomically optimized procedure. The new device design ensures deployment of the electrodes in a pre-defined fully circumferential pattern. Moreover, this design provides a radial contact that presses the electrodes against the arterial wall thereby maximizing the efficiency of radiofrequency (RF) tissue heating. Another major improvement of RDN therapy is the anatomical optimization of the procedure by extending the treatment into the segmental branches of the renal artery where the renal nerves concentrate the most around renal vessels. This article presents an analysis of the current state-of-the-development and future perspectives of RDN therapy.

About the Authors

S. E. Pekarskiy
Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

M.D., Dr. Sci. (Med.), Leading Research Scientist, Department of Hypertension, Cardiology Research Institute, 

111a, Kievskaya str., Tomsk, 634012



V. F. Mordovin
Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
M.D., Dr. Sci. (Med.), Professor, Head of the Department of Hypertension, Cardiology Research Institute, 

111a, Kievskaya str., Tomsk, 634012



T. M. Ripp
Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
M.D., Dr. Sci. (Med.), Leading Research Scientist, Department of Hypertension, Cardiology Research Institute, 

111a, Kievskaya str., Tomsk, 634012



A. Yu. Falkovskaya
Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
M.D., Cand. Sci. (Med.), Senior Research Scientist, Department of Hypertension, Cardiology Research Institute, 

111a, Kievskaya str., Tomsk, 634012



References

1. Global health risks. Мortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009:62.

2. Forouzanfar M.H., Liu P., Roth G.A., Ng M., Biryukov S. Marczak L. et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA. 2017;317(2):165–182. DOI: 10.1001/jama.2016.19043.

3. Heart disease and stroke statistics-2017 update. A report from the American Heart Association. Circulation. 2017;135:e146–e603. DOI: 10.1161/CIR.0000000000000485.

4. Heilbrunn S.M., Shah P., Bristow M.R., Valantine H.A., Ginsburg R., Fowler M.B. Increased beta-receptor density and improved hemodynamic response to catecholamine stimulation during long-term metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation. 1989;79(3):483–490.

5. Kramkowski K., Mogielnicki A., Buczko W. The physiological significance of the alternative pathways of angiotensin II production. J. Physiol. Pharmacol. 2006;57(4):529–539.

6. Zisaki A., Miskovic L., Hatzimanikatis V. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Current. Pharmaceutical Design. 2015;21:806–822.

7. Judd E., Calhoun D.A. Apparent and true resistant hypertension: definition, prevalence and outcomes. J. Hum. Hypertens. 2014;28(8):463– 468. DOI: 10.1038/jhh.2013.140.

8. Bramlage P., Hasford J. Blood pressure reduction, persistence and costs in the evaluation of antihypertensive drug treatment-a review. Cardiovascular. Diabetology. 2009;27(8):18. DOI: 10.1186/1475-2840-8-18.

9. Morris A.B., Li J., Kroenke K., Bruner-England T.E., Young J.M., Murrey M.D. et al. Factors associated with drug adherence and blood pressure control in patients with hypertension. Pharmacotherapy. 2006; 26(4):483–492. DOI: 10.1592/phco.26.4.483.

10. Crowe D.A., Goodwin S.J., Blackman R.K., Sakellaridi S., Sponheim S.R., MacDonald A.W. et al. Prefrontal neurons transmit signals to parietal neurons that reflect executive control of cognition. Nat. Neurosci. 2013;16(10):1484–1491. DOI: 10.1038/nn.3509.

11. Vohs K.D., Baumeister R.F., Schmeichel B.J., Twenge J.M., Nelson N.M., Tice D.M. Making choices impairs subsequent self-control: a limited-resource account of decision making, f-regulation, and active initiative. J. Pers. Soc. Psychol. 2008;94(5):883–898. DOI: 10.1037/0022-3514.94.5.883.

12. Cramer J.A., Benedict A., Muszbek N., Keskinalsan A., Khan Z.M. The significance of compliance and persistence in the treatment of diabetes, hypertension and dyslipidaemia: a review. Int. J. Clin. Pract. 2008;62(1):76–87. DOI: 10.1111/j.1742-1241.2007.01630.x.

13. Krum H., Schlaich M., Whitbourn R., Sobotka P.A., Sadowski J., Bartus K. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;11;373(9671):1275–1281. DOI: 10.1016/S0140-6736(09)60566-3.

14. Esler M.D., Krum H., Sobotka P.A., Schlaich M.P., Schmieder R.E., Böhm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;4;376(9756):1903–1909. DOI: 10.1016/S0140-6736(10)62039-9.

15. Bhatt D.L., Kandzari D.E., O’Neill W.W., D’Agostino R., Flack J.M., Katzen B.T. et al. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 2014;10;370(15):1393–1401. DOI: 10.1056/ NEJMoa1402670.

16. Kandzari D.E., Bhatt D.L., Brar S., Devireddy C.M., Esler M., Fahy M. et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur. Heart J. 2015;36:219–227. DOI: 10.1093/eurheartj/ehu441.

17. Pekarskiy S., Baev A., Mordovin V., Semke G., Ripp T., Falkovskaya A. et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. Journal of Hypertension. 2017;35(2):369–375. DOI: 10.1097/HJH.0000000000001160.

18. Townsend R.R., Mahfoud F., Kandzari D.E. et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTNOFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–2170. DOI: 10.1016/S0140-6736(17)32281-X.

19. Kandzari D.E., Bohm M., Mahfoud F., Townsend R.R., Weber M.A., Pocock S. et al. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomized trial. Lancet. 2018;391:2346–2355. DOI: 10.1016/S0140-6736(18)30951-6.

20. Azizi M., Schmieder R.E., Mahfoud F., Weber MA., Daemen J., Davies J. et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. Lancet. 2018;391:2335–2345. DOI: 10.1016/S0140-6736(18)31082-1.

21. Ettehad D., Emdin C.A., Kiran A., Anderson S.G., Callender T., Emberson J. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–967. DOI: 10.1016/S0140-6736(15)01225-8.


Review

For citations:


Pekarskiy S.E., Mordovin V.F., Ripp T.M., Falkovskaya A.Yu. Renal denervation in 2019. Siberian Journal of Clinical and Experimental Medicine. 2019;34(3):21-32. (In Russ.) https://doi.org/10.29001/2073-8552-2019-34-3-21-32

Views: 584


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)