Polymorphism in folate cycle genes in patients with gout in the Russian population of Trans-Baikal Territory
https://doi.org/10.29001/2073-8552-2020-35-1-142-150
Abstract
Material and Methods. 80 patients (69 men and 11 women) with gout were examined. The diagnosis of gout was made according to the classification criteria ACR/EULAR, 2015. DNA isolated from white blood cells of whole peripheral blood was the material used in the genetic analyses. All patients were genotyped to detect polymorphisms of the MTHFR C677T, MTHFR A1298G, MTR A2756G, MTRR A66G gene loci. Statistical data processing was performed using the software package Statistiсa 10.0.
Results. Genetic polymorphisms of the MTHFR C677T and MTR A2756G genes are involved in the development of gout in individuals of Russian ethnicity in the population of the Trans-Baikal Territory. Minor T allele (χ2 = 4.65, p = 0.03, OR = 1.83, CI95% = 1.05–3.17) and the T/T genotype (χ2 = 6.5, p = 0.01, OR = 5.94, CI95% = 1.3–27.00) of the C677T locus of the MTHFR gene, minor G allele (χ2 = 6.46, p = 0.01, OR = 2.38, CI95% = 1.2–4.69) and the A/G genotype of the MTR A2756G gene (χ2 = 5.78, p = 0.01, OR = 2.66, CI95% = 1.18–5.98 ) were identified as alleles and genotypes having increased risk for developing gout. While the C allele (χ2 = 4.65, p = 0.03, OR = 0.55, CI95% = 0.31–0.94) of the MTHFR C677T gene, and allele A (χ2 = 6.46, p = 0.01, OR = 0.42, CI95% = 0.21–0.83) and genotype A/A (χ2 = 7.58, p = 0.006, OR = 0.33, CI95% = 0.15–0.74) of the A2756G locus of the MTR gene were determined as genotypes and alleles having a protective effect.
Conclusion. Significant differences were found in the frequency distribution of genotypes and alleles of the MTHFR C677T and MTR A2756G genes in gout patients compared with the control group. The presence of minor T allele and the T/T genotype of MTHFR C677T gene, the minor G allele and the A/G genotype of MTR A2756G gene was associated with an increased risk of gout. In contrast, the carriage of the C allele of MTHFR C677T gene, allele A and the genotype A/A of MTR A2756G gene had a potentially protective effect.
About the Authors
N. N. KushnarenkoRussian Federation
Dr. Sci. (Med.), Associate Professor, Head of the Department of Internal Medicine, Pediatric and Dental Faculties
39A, Gorky str., Chita, 672090, Russian Federation
M. Yu. Mishko
Russian Federation
Assistant Professor, Department of Internal Medicine, Pediatric and Dental Faculties
39A, Gorky str., Chita, 672090, Russian Federation
T. A. Medvedeva
Russian Federation
Assistant Professor, Department of Internal Medicine, Pediatric and Dental Faculties
39A, Gorky str., Chita, 672090, Russian Federation
References
1. Grinshtein Y.I., Shabalin V.V., Ruf R.R., Petrova М.М., Artyukhov I.P., Shalnova S.А. Relation of hyperuricaemia, renal function and arterial hypertension in a large region of the eastern Siberia inhabitants. Russian Journal of Cardiology. 2017;(6):86–91 (In Russ.). DOI: 10.15829/1560-4071-2017-6-86-91.
2. Eliseev M.S., Novikova A.M. Comorbidity in gout and hyperuricemia: prevalence, causes, prospects of urate lowering therapy. Therapeutic Archive. 2019;91(5):120–128 (In Russ.). DOI: 10.26442/00403660.2019.05.000232.
3. Wei C.Y., Sun C.C., Wei J.C., Tai H.C., Sun C.A., Chung C.F. et al. Association between Hyperuricemia and Metabolic Syndrome: An Epidemiological Study of a Labor Force Population in Taiwan. BioMed. Research International. 2015;(7):369179. DOI: 10.1155/2015/369179.
4. Vedder D., Walrabenstein W., Heslinga M., de Vries R., Nurmohamed M., van Schaardenburg D. et al. Dietary Interventions for Gout and Effect on Cardiovascular Risk Factors: A Systematic Review. Nutrients. 2019;11(12):2955. DOI: 10.3390/nu11122955.
5. Li R., Yu K., Li C. Dietary factors and risk of gout and hyperuricemia: a meta-analysis and systematic review. Asia Pac. J. Clin. Nutr. 2018;27(6):1344–1356. DOI: 10.6133/apjcn.201811_27(6).0022.
6. Merriman T.R. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res. Ther. 2015;17:98. DOI: 10.1186/s13075-015-0609-2.
7. Dalbeth N., Stamp L.K., Merriman T.R. The genetics of gout: towards personalised medicine? BMC Medicine. 2017;15(1):108. DOI: 10.1186/s12916-017-0878-5.
8. Kushnarenko N.N., Mishko M.Y., Medvedeva T.A., Vitkovsky Y.A. ABCG2 gene polymorphism in patients with gout in Zabaikalsky Krai. Complex Issues of Cardiovascular Diseases. 2019;8(2):77–86 (In Russ.). DOI: 10.17802/2306-1278-2019-8-2-77-86).
9. Hiraoka M., Kagawa Y. Genetic polymorphisms and folate status. Congenital Anomalies. 2017;57(5):142–149. DOI: 10.1111/cga.12232.
10. Li W.X., Cheng F., Zhang A.J., Dai S.X., Li G.H., Lv W.W. et al. Folate deficiency and gene polymorphisms of MTHFR, MTR and MTRR elevate the hyperhomocysteinemia risk. Clin. Lab. 2017;63(3):523–533. DOI: 10.7754/Clin.Lab.2016.160917.
11. Liew S.C., Gupta E.D. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur. J. Med. Genet. 2015;58(1):1–10. DOI: 10.1016/j.ejmg.2014.10.004.
12. Nazki F.H., Sameer A.S., Ganaie B.A. Folate: metabolism, genes, polymorphisms and the associated diseases. Gene. 2014;533(1):11–20. DOI: 10.1016/j.gene.2013.09.063.
13. Yuan Y., Shao W., Li Y. Associations between C677T and A1298C polymorphisms of MTHFR and susceptibility to rheumatoid arthritis: a systematic review and meta-analysis. Rheumatol. Int. 2017;37(4):557–569. DOI: 10.1007/s00296-017-3650-4.
14. Zhao M., Wang X., He M., Qin X., Tang G., Huo Y. et al. Homocysteine and stroke risk: modifying effect of methylenetetrahydrofolate reductase C677T polymorphism and folic acid intervention. Stroke. 2017;48(5):1183–1190. DOI 10.1161/STROKEAHA.116.015324.
15. Levin B.L., Varga E. MTHFR: Addressing genetic counseling dilemmas using evidence-based literature. J. Genet. Couns. 2016;25(5):901–911. DOI: 10.1007/s10897-016-9956-7.
16. Hong Y.S., Lee M.J, Kim K.H., Lee S.H., Lee Y.H., Kim B.G. et al. The C677 mutation in methylene tetrahydrofolate reductase gene: correlation with uric acid and cardiovascular risk factors in elderly Korean men. J. Korean. Med. Sci. 2004;19(2):209–213. DOI: 10.3346/jkms.2004.19.2.209.
17. Zuo M., Nishio H., Lee M.J., Maejima K., Mimura S., Sumino K. The C677T mutation in the methylene tetrahydrofolate reductase gene increases serum uric acid in elderly men. J. Hum. Genet. 2000;45:257–262. DOI: 10.1007/s100380070037.
18. Van der Heijde D., Aletaha D., Carmona L., Edwards C.J., Kvien T.K., Kouloumas M. et al. 2014 Update of the EULAR standardised operating procedures for EULAR-endorsed recommendations. Ann. Rheum. Dis. 2015;74(1):8–13. DOI: 10.1136/annrheumdis-2014-206350.
19. Itou S., Goto Y., Suzuki K., Kawai S., Naito M., Ito Y. et al. Significant association between methylenetetrahydrofolate reductase 677T allele and hyperuricemia among adult Japanese subjects. Nutr. Res. 2009;29(10):710–715. DOI: 10.1016/j.nutres.2009.10.006.
Review
For citations:
Kushnarenko N.N., Mishko M.Yu., Medvedeva T.A. Polymorphism in folate cycle genes in patients with gout in the Russian population of Trans-Baikal Territory. Siberian Journal of Clinical and Experimental Medicine. 2020;35(1):142-150. (In Russ.) https://doi.org/10.29001/2073-8552-2020-35-1-142-150