Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

Heart damage and the role of ultrasonic research in the COVID-19 pandemic

https://doi.org/10.29001/2073-8552-2021-36-1-38-48

Abstract

 This literature review focuses on the damage to the heart in the presence of coronavirus disease (COVID-19). A point-of-care ultrasound (POCUS) protocol for patients with COVID-19 is presented. The advisability of assessing the mechanics of the left and right ventricles in COVID-19 patients is demonstrated. 

About the Authors

E. N. Pavlyukova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

  Dr. Sci. (Med.), Professor, Head of the Department of Atherosclerosis and Coronary Artery Disease


111a, Kievskaya str., Tomsk, 634012, Russian Federation 



V. I. Skidan
Federal Center for Cardiovascular Surgery
Russian Federation

  Cand. Sci. (Med.), Medical Doctor

2v, Krasnodarskaya str., Khabarovsk, 680009, Russian Federation 



E. V. Rosseikin
Federal Center for Cardiovascular Surgery
Russian Federation

 Dr. Sci. (Med.), Cardiovascular Surgeon, Chief Physician

 2v, Krasnodarskaya str., Khabarovsk, 680009, Russian Federation 



G. P. Nartsissova
National Medical Research Center named after Academician E.N. Meshalkin
Russian Federation

  Dr. Sci. (Med.), Physician of Functional Diagnostics, Consultative and Diagnostic Center No. 1, Leading Research Scientist, Group of Functional and Ultrasound Diagnostics, Center for New Technologies

15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation 



R. S. Karpov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

  Dr. Sci. (Med.), Full Member of the Russian Academy of Sciences, Chief Research Scientist

111a, Kievskaya str., Tomsk, 634012, Russian Federation 



References

1. Сoronavirus. Сoronavirus statistics (In Russ.). URL: https://coronavirus-stata.ru/statistika-koronavirusa-v-mire-na-20-oktyabrya-2020-goda/.

2. Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. DOI: 10.1126/science.abb2762.

3. Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19); version 8.1 of 01.10.2020. Moscow: Ministry of Health of Russian Federation; 2020:226 (In Russ.).

4. Shlyakhto E.V., Konradi A.O., Villevalde S.V., Zvartau N., Yakovlev A.N., Solov’eva A.E. et al. Guidelines for the diagnosis and treatment of diseases of the circulatory system (BSC) in the context of the COVID-19 pandemic (short version). Moscow; 2020:36 (In Russ.).

5. Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020;17(5):259–260. DOI: 10.1038/s41569-020-0360-5.

6. Clerkin K.J., Fried J.A., Raikhelkar J., Sayer G., Griffin J.M., Masoumi A. et al. COVID-19 and cardiovascular disease. Circulation. 2020;141(20):1648–1655. DOI: 10.1161/CIRCULATIONAHA.120.046941.

7. Meng X., Deng Y., Dai Z., Meng Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am. J. Otolaryngol. 2020;41(5):102581. DOI: 10.1016/j.amjoto.2020.102581.

8. Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020;39(5):405–407. DOI: 10.1016/j.healun.2020.03.012.

9. Grasselli G., Pesenti A., Cecconi M. Critical сare гtilization for the COVID-19 оutbreak in Lombardy, Italy: Early еxperience and forecast during an emergency response. JAMA. 2020;323(16):1545–1546. DOI: 10.1001/jama.2020.4031.

10. Bonow R.O., Fonarow G.C., O’Gara P.T., Yancy C.W. Association of сoronavirus disease 2019 (COVID-19) with myocardial injury and mortality. JAMA Cardiol. 2020;5(7):751–753. DOI: 10.1001/jamacardio.2020.1105.

11. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X. et al.; China Medical Treatment Expert Group for Covid-19. Clinical сharacteristics of сoronavirus disease 2019 in China. N. Engl. J. Med. 2020;382(18):1708–1720. DOI: 10.1056/NEJMoa2002032.

12. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8(4):420–422. DOI: 10.1016/S2213-2600(20)30076-X.

13. Alhogbani T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. Ann. Saudi Med. 2016;36(1):78– 80. DOI: 10.5144/0256-4947.2016.78.

14. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5.

15. Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F. et al. Association of сardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802–810. DOI: 10.1001/jamacardio.2020.0950.

16. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. DOI: 10.1001/jama.2020.1585.

17. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T. et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. DOI: 10.1001/jamacardio.2020.1017.

18. Long B., Brady W.J., Koyfman A., Gottlieb M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 2020;38(7):1504– 1507. DOI: 10.1016/j.ajem.2020.04.048.

19. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. DOI: 10.1007/s00134-020-05991-x.

20. Akhmerov A., Marbán E. COVID-19 and the heart. Circ. Res. 2020;126(10):1443–1455. DOI: 10.1161/CIRCRESAHA.120.31.

21. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu S.C. et al. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49(5):411–417. DOI: 10.3760/cma.j.cn112151-20200312-00193.

22. Aretz H.T. Myocarditis: Тhe Dallas criteria. Hum. Pathol. 1987;18(6):619–624. DOI: 10.1016/s0046-8177(87)80363-5.

23. Fung G., Luo H., Qiu Y., Yang D., McManus B. Myocarditis. Circ. Res. 2016;118(3):496–514. DOI: 10.1161/CIRCRESAHA.115.306573.

24. Oudit G.Y., Kassiri Z., Jiang C., Liu P.P., Poutanen S.M., Penninger J.M. et al. SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur. J. Clin. Invest. 2009;39(7):618–625. DOI: 10.1111/j.1365-2362.2009.02153.x.

25. Garvin M.R., Alvarez C., Miller J.I., Prates E.T., Walker A.M., Amos B.K. et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020;9:e59177. DOI: 10.7554/eLife.59177.

26. Zairatiants O.V., Samsonova O.V., Mikhailova L.M., Chernyaev A.L., Mishnev O.D., Krupnov N.M. et al.; edit. by O.V. Zayratyants. Pathological anatomy of COVID 19: Atlas. Moscow; 2020:120 (In Russ.).

27. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M. et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020;191:148–150. DOI: 10.1016/j.thromres.2020.04.041.

28. Desai H.D., Jadeja D.M., Sharma K. Takotsubo syndrome a rare entity in patients with COVID-19: An updated review of case-reports and case-series. Int. J. Cardiol. Heart Vasc. 2020;29:100604. DOI: 10.1016/j.ijcha.2020.100604.

29. Faqihi F., Alharthy A., Alshaya R., Papanikolaou J., Kutsogiannis D.J., Brindley P.G. et al. Reverse takotsubo cardiomyopathy in fulminant COVID-19 associated with cytokine release syndrome and resolution following therapeutic plasma exchange: a case-report. BMC Cardiovasc. Disord. 2020;20(1):389. DOI: 10.1186/s12872-020-01665-0.

30. Dabbagh M.F., Aurora L., D’Souza P., Weinmann A.J., Bhargava P., Basir M.B. et al. Cardiac tamponade secondary to COVID-19. JACC Case Rep. 2020;2(9):1326–1330. DOI: 10.1016/j.jaccas.2020.04.009.

31. Sala S., Peretto G., Gramegna M., Palmisano A., Villatore A., Vignale D. et al. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection. Eur. Heart J. 2020;41(19):1861–1862. DOI: 10.1093/eurheartj/ehaa286.

32. Li B., Yang J., Zhao F., Zhi L., Wang X., Liu L. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020;109(5):531–538. DOI: 10.1007/s00392-020-01626-9.

33. Capotosto L., Nguyen B.L., Ciardi M.R., Mastroianni C., Vitarelli A. Heart, COVID-19, and echocardiography. Echocardiography. 2020;37(9):1454–1464. DOI: 10.1111/echo.14834.

34. Babapoor-Farrokhran S., Gill D., Walker J., Rasekhi R.T., Bozorgnia B., Amanullah A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020;253:117723. DOI: 10.1016/j.lfs.2020.117723.

35. Lippi G., Lavie C.J., Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog. Cardiovasc. Dis. 2020;63(3):390–391. DOI: 10.1016/j.pcad.2020.03.001.

36. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020;8(4):e21. DOI: 10.1016/S2213-2600(20)30116-8.

37. Kuster G.M., Pfister O., Burkard T., Zhou Q., Twerenbold R., Haaf P. et al. SARS-CoV2: Should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur. Heart J. 2020;41(19):1801–1803. DOI: 10.1093/eurheartj/ehaa235.

38. Ferrario C.M., Jessup J., Chappell M.C., Averill D.B., Brosnihan K.B., Tallant E.A. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–2610. DOI: 10.1161/CIRCULATIONAHA.104.510461.

39. Sun M.L., Yang J.M., Sun Y.P., Su G.H. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. Zhonghua

40. Jie He He Hu Xi Za Zhi. 2020;43(3):219–222. DOI: 10.3760/cma.j.is sn.1001-0939.2020.03.016.

41. Danser A.H.J., Epstein M., Batlle D. Renin-angiotensin system blockers and the COVID-19 pandemic: At present there is no evidence to abandon renin-angiotensin system blockers. Hypertension. 2020;75(6):1382–1385. DOI: 10.1161/HYPERTENSIONAHA.120.15082.

42. Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N. Engl. J. Med. 2020;382(17):1653–1659. DOI: 10.1056/NEJMsr2005760.

43. Inciardi R.M., Lupi L., Zaccone G., Italia L., Raffo M., Tomasoni D. et al. Cardiac involvement in a patient with coronavirus disease 2019

44. (COVID-19). JAMA Cardiol. 2020;5(7):819–824. DOI: 10.1001/jamacardio.2020.1096.

45. Deshotels M.R., Xia H., Sriramula S., Lazartigues E., Filipeanu C.M. Angiotensin II mediates an-giotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension. 2014;64(6):1368–1375. DOI: 10.1161/HYPERTENSIONAHA.114.03743.

46. Shah P.B., Welt F.G.P., Mahmud E. Triage considerations for patients referred for structural heart disease intervention during the coronavirus disease 2019 (COVID-19) pandemic: An ACC /SCAI Consensus Statement. JACC Cardiovasc. Interv. 2020;13(12):1484–1488. DOI: 10.1016/j.jcin.2020.04.001.

47. Tan W., Aboulhosn J. The cardiovascular burden of coronavirus disease 2019 (COVID-19) with a focus on congenital heart disease. Int. J. Cardiol. 2020;309:70–77. DOI: 10.1016/j.ijcard.2020.03.063.

48. Liu K., Fang Y.Y., Deng Y., Liu W., Wang M.F., Ma J.P. et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei province. Chin. Med. J. (Engl.). 2020;133(9):1025–1031. DOI: 10.1097/CM9.0000000000000744.

49. Chen C., Chen C., Yan J.T., Zhou N., Zhao J.P., Wang D.W. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(7):567–571. DOI: 10.3760/cma.j.cn112148-20200225-00123.

50. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H. et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020;8(5):475–481. DOI: 10.1016/S2213-2600(20)30079-5.

51. Alon D., Stein G.Y., Korenfeld R., Fuchs S. Predictors and outcomes of infection-related hospital admissions of heart failure patients. PLoS One. 2013;8(8):e72476. DOI: 10.1371/journal.pone.0072476.

52. Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M. et al. Characteristics and outcomes of 21 critically Ill patients with COVID-19 in Washington State. JAMA. 2020;323(16):1612–1614. DOI: 10.1001/jama.2020.4326.

53. Szekely Y., Lichter Y., Taieb P., Banai A., Hochstadt A., Merdler I. et al. Spectrum of Cardiac Manifestations in COVID-19: A Systematic Echocardiographic Study. Circulation. 2020;142(4):342–353. DOI: 10.1161/CIRCULATIONAHA.120.047971.

54. Mehra M.R., Ruschitzka F. COVID-19 Illness and heart failure: A missing link? JACC Heart Fail. 2020;48(6):512–514. DOI: 10.1016/j.jchf.2020.03.004.

55. Gao L., Jiang D., Wen X.S., Cheng X.C., Sun M., He B. et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir. Res. 2020;21(1):83. DOI: 10.1186/s12931-020-01352-w.

56. D’Andrea A., Scarafile R., Riegler L., Liccardo B., Crescibene F., Cocchia R. et al. Right ventricular function and pulmonary pressures as independent predictors of survival in patients with COVID-19 pneumonia. JACC Cardiovasc. Imaging. 2020;13(1):2467–2468. DOI: 10.1016/j.jcmg.2020.06.004.

57. Barman H.A., Atici A., Tekin E.A., Baycan O.F., Alici G., Meric B.K. et al. Echocardiographic features of patients with COVID-19 infection: A cross-sectional study. Int. J. Cardiovasc. Imaging. 2020;8:1–10. DOI: 10.1007/s10554-020-02051-9.

58. Baycan O.F., Barman H.A., Atici A., Tatlisu A., Bolen F., Ergen P. et al. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int. J. Cardiovasc. Imaging. 2020;15:1–10. DOI: 10.1007/s10554-020-01968-5.

59. Stöbe S., Richter S., Seige M., Stehr S., Laufs U., Hagendorff A. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clin. Res. Cardiol. 2020;109(12):1549–1566. DOI: 10.1007/s00392-020-01727-5.

60. Croft L.B., Krishnamoorthy P., Ro R., Anastasius M., Zhao W., Buckley S. et al. Abnormal left ventricular global longitudinal strain by speckle tracking echocardiography in COVID-19 patients. Future Cardiol. 2020;9:10.2217/fca-2020-0121. DOI: 10.2217/fca-2020-0121.

61. Mahmoud-Elsayed H.M., Moody W.E., Bradlow W.M., Khan-Kheil A.M., Senior J., Hudsmith L.E. et al. Echocardiographic findings in patients with COVID-19 pneumonia. Can. J. Cardiol. 2020;36(8):1203–1207. DOI: 10.1016/j.cjca.2020.05.030.

62. Fayssoil A., Mustafic H., Mansencal N. The right ventricle in COVID-19 patients. Am. J. Cardiol. 2020;130:166–167. DOI: 10.1016/j.amjcard.2020.06.007.

63. Li Y., Li H., Zhu S., Xie Y., Wang B., He L. et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. JACC Cardiovasc. Imaging. 2020;13(11):2287–2299. DOI: 10.1016/j.jcmg.2020.04.014.

64. Xiong T.Y., Redwood S., Prendergast B., Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur. Heart J. 2020;41(19):1798–1800. DOI: 10.1093/eurheartj/ehaa231.

65. Johri A.M., Galen B., Kirkpatrick J.N., Lanspa M., Mulvagh S., Thamman R. ASE statement on point-of-care ultrasound during the 2019 novel coronavirus pandemic. J. Am. Soc. Echocardiogr. 2020;33(6):670–673. DOI: 10.1016/j.echo.2020.04.017.

66. Cardiovascular point-of-care imaging for the medical student and novice user. American Society of Echocardiography. URL: https://aseuniversity.org/ase/lessons/47 (available from March 25, 2020).


Review

For citations:


Pavlyukova E.N., Skidan V.I., Rosseikin E.V., Nartsissova G.P., Karpov R.S. Heart damage and the role of ultrasonic research in the COVID-19 pandemic. Siberian Journal of Clinical and Experimental Medicine. 2021;36(1):38-48. (In Russ.) https://doi.org/10.29001/2073-8552-2021-36-1-38-48

Views: 21424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)