Experimental evaluation of a hybrid thoracic aortic prosthesis in a pig model
https://doi.org/10.29001/2073-8552-2021-36-1-141-149
Abstract
Relevance. The frozen elephant trunk technique is recognized as a safe and effective method of surgical treatment for aneurysms and dissections of the thoracic aorta. The hybrid prostheses, available on the territory of the Russian Federation, are foreign-made, characterized by a high price, and, accordingly, unpopular. Due to unavailability of domestic hybrid prostheses in the home market, the development of domestic prosthesis is the key point to further progress in aortic surgery in the Russian Federation.
Aim. The aim of the study was to evaluate the implantation characteristics of prototype hybrid thoracic aorta prosthesis in the pig model and the transformation of the prosthesis in the postoperative period.
Material and Methods. The hybrid prosthesis consists of two parts including the vascular part and a stent graft. The prosthesis is made of Dacron and Z-shaped nitinol wire stents. A Landrace pig aged six months with body weight of 120 kg underwent open reconstruction of the descending aorta through the left-sided lateral thoracotomy, under conditions of extracorporeal bypass with a roller pump from the left subclavian artery to the descending aorta. The animal was removed from the experiment after six months as planned. The macro- and microscopic evaluation of the removed implant was performed.
Results. The technical success of implantation of hybrid stent graft prototype was confirmed. Macroscopy of the stent graft, removed after six months, demonstrated a complete coverage of the neointimal inner surface of the synthetic prosthesis. The lumen of the product was patent. Histological examination revealed the neointima presented as a structured connective tissue without signs of inflammation. The luminal surface was lined with a single layer of evenly spaced endotheliocytes. The thickness of the neointima in the vascular part was significantly greater than in the stent-graft part (p = 0.0121).
Conclusion. The study demonstrated the technical feasibility of implantation of the prototype hybrid prosthesis developed by Angioline Research LLC. The effectiveness of sealing impregnation was confirmed by the absence of active signs of bleeding during the perioperative and early postoperative stages. The prosthesis demonstrated satisfactory bio- and hemocompatibility.
About the Authors
A. A. ShadanovRussian Federation
Postgraduate Student, Aortic and Coronary Artery Surgery Center
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
M. M. Lyashenko
Russian Federation
Head of the Department of Aorta and Coronary Arteries
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
I. Y. Zhuravleva
Russian Federation
Dr. Sci. (Med.), Professor, Head of the Bioprosthetics Laboratory
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
D. V. Trebushat
Russian Federation
Head of the Research and Development Department
6, Tekhnoparkovaya str., Novosibirsk, Koltsovo, 630559, Russian Federation
K. K. Kozyr
Russian Federation
Software Engineer
6, Tekhnoparkovaya str., Novosibirsk, Koltsovo, 630559, Russian Federation
M. B. Vasilyeva
Russian Federation
Cand. Sci. (Med.), Research Scientist, Laboratory of Experimental Surgery and Morphology, Center for New Technologies
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
I. S. Zykov
Russian Federation
Anesthesiologist-Intensivist, Department of Anesthesiology and Intensive Care, X-Ray Operating Room
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
M. O. Zhulkov
Russian Federation
Postgraduate Student, Aortic and Coronary Artery Surgery Center
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
D. A. Sirota
Russian Federation
Cand. Sci. (Med.), Acting Head of the Center for Aortic and Coronary Artery Surgery
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
A. M. Chernyavskiy
Russian Federation
Dr. Sci. (Med.), Professor, Director
15, Rechkunovskaya str., Novosibirsk, 630055, Russian Federation
References
1. Kouchoukos N.T. One-stage repair of extensive thoracic aortic disease. J. Thorac. Cardiovasc. Surg. 2010;140(6):150–153. DOI: 10.1016/j.jtcvs.2010.07.035.
2. Borst H.G., Walterbusch G., Schaps D. Extensive aortic replacement using “elephant trunk” prosthesis. Thorac. Cardiovasc. Surg. 1983;31(1):37–40. DOI: 10.1055/s-2007-1020290.
3. Svensson L.G., Rushing G.D., Valenzuela E.S., Rafael A.E., Batizy L.H., Blackstone E.H. et al. Modifications, classification, and outcomes of elephant-trunk procedures. Ann. Тhorac. Surg. 2013;96(2):548–558. DOI: 10.1016/j.athoracsur.2013.03.082.
4. Karck M., Chavan A., Hagl C., Friedrich H., Galanski M., Haverick A. The frozen elephant trunk technique: A new treatment for thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 2003;125(6):1550–1553. DOI: 10.1016/S0022-5223(03)00045-X.
5. Spear R., Haulon S., Ohki T., Tsilimparis N., Kanaoka Y., Milne C.P.E. et al. Editor’s choice – subsequent results for arch aneurysm repair with inner branched endografts. Eur. J. Vasc. Endovasc. Surg. 2016;51(3):380–385. DOI: 10.1016/j.ejvs.2015.12.002.
6. Nauta F.J.H., Conti M., Marconi S., Kamman A.V., Alaimo G., Morganti S. et al. An experimental investigation of the impact of thoracic endovascular aortic repair on longitudinal strain. Eur. J. Cardiothorac. Surg. 2016;50(5):955–961. DOI: 10.1093/ejcts/ezw180.
7. Saw L.J., Lim-Cooke M.S., Woodward B., Othman A., Harky A. The surgical management of acute type A aortic dissection: Current options and future trends. Journal of Cardiac Surgery. 2020;35(9):2286–2296. DOI: 10.1111/jocs.14733.
8. Shadanov A.A., Sirota D.A., Bergen T.A., Lyashenko M.M., Chernyavskiy A.M. Anatomical variability in the structure of the arch and thoracic aorta and its influence on aorta related pathological conditions. Circulation Patology and Cardiac Surgery. 2020;24(4):72–82 (In Russ.). DOI: 10.21688/1681-3472-2020-4-72-82.
9. Di Bartolomeo R., Murana G., Di Marco L., Pantaleo A., Alfonsi J., Leone A. et al. Frozen versus conventional elephant trunk technique: application in clinical practice. Eur. J. Cardiothorac. Surg. 2017;51(1):i20–i28. DOI: 10.1093/ejcts/ezw335.
10. Haulon S., Kratzberg J.A., Wilger K.D. United States patent application 20190365523 A1. Branched frozen elephant trunk device and method. Publ. 05.12.2019.
11. Palermo T.J., Lee P.-H., Jen J. United States patent application 20200253711 A1. Vascular and aortic grafts and deployment tool. Publ. 13.08.2020.
12. Shrestha M., Kaufeld T., Beckmann E., Fleissner F., Umminger J., Alhadi F.A. et al. Total aortic arch replacement with a novel 4- branched frozen elephant trunk prosthesis: Single-center results of the first 100 patients. J. Thorac. Cardiovasc. Surg. 2016;152(1):148–159e1. DOI: 10.1016/j.jtcvs.2016.02.077.
13. Ma W.G., Zheng J., Sun L.Z., Elefteriades J.A. Open stented grafts for frozen elephant trunk technique: Technical aspects and current outcomes. AORTA (Stamford). 2015;3(4):122–135. DOI: 10.12945/j.aorta.2015.14.062.
14. Qing K-X., Chan Y.C., Lau S.F., Yiu W-K., Ting A.C.W., Cheng S.W.K. Ex-vivo haemodynamic models for the study of Stanford type B aortic dissection in isolated porcine aorta. Eur. J. Vasc. Endovasc. Surg. 2012;44(4):399–405. DOI: 10.1016/j.ejvs.2012.06.004.
15. Lelovas P.P., Kostomitsopoulos N.G., Xanthos T.T. A comparative anatomic and physiologic overview of the porcine heart. J. Am. Assoc. Lab. Anim. Sci. 2014;53(5):432–438.
16. Houbballah R., Robaldo A., Albadawi H., Titus J., LaMuraglia G.M. A novel model of accelerated intimal hyperplasia in the pig iliac artery. Int. J. Exp. Pathol. 2011;92(6):422–427. DOI: 10.1111/j.1365-2613.2011.00790.x.
17. Islam M.S. Relationship between textile irregularities and premature rupture of polyester vascular graft knitted fabric: Master thesis. 2017:136. https://mspace.lib.umanitoba.ca/handle/1993/32852.
18. Voûte M.T., Concalves F.M.B., van de Luijtgaarden K.M., Nullent C.G., Hoeks S.E., Stolker R.J. et al. Stent graft composition plays a material role in the postimplantation syndrome. J. Vasc. Surg. 2012;56(6):1503–1509. DOI: 10.1016/j.jvs.2012.06.072.
19. Shin C.K., Rodino W., Kirwin J.D., Ramirez J.A., Wisselink W., Papierman G. et al. Histology and electron microscopy of explanted bifurcated endovascular aortic grafts: Evidence of early incorporation and healing. J. Endovasc. Ther. 1999;6(3):246–250. DOI: 10.1177/152660289900600306.
20. Siegenthaler M.P., Celik R., Haberston J., Bajona P., Goebel H., Brehm K. et al. Thoracic endovascular stent grafting inhibits aortic growth: an experimental study. Eur. J. Cardiothorac. Surg. 2008;34(1):17–24. DOI: 10.1016/j.ejcts.2008.03.045.
21. Formichi M., Marois Y., Roby P., Marinov G., Stroman P., King M.W. et al. Endovascular repair of thoracic aortic aneurysm in dogs: evaluation of a nitinol-polyester self-expanding stent-graft. J. Endovasc. Ther. 2000;7(1):47–67. DOI: 10.1177/152660280000700108.
22. Klopfleisch R., Jung F. The pathology of the foreign body reaction against biomaterials. J. Biomed. Mater. Res. A. 2017;105(3):927–940. DOI: 10.1002/jbm.a.35958.
Review
For citations:
Shadanov A.A., Lyashenko M.M., Zhuravleva I.Y., Trebushat D.V., Kozyr K.K., Vasilyeva M.B., Zykov I.S., Zhulkov M.O., Sirota D.A., Chernyavskiy A.M. Experimental evaluation of a hybrid thoracic aortic prosthesis in a pig model. Siberian Journal of Clinical and Experimental Medicine. 2021;36(1):141-149. (In Russ.) https://doi.org/10.29001/2073-8552-2021-36-1-141-149