Reconstruction of the right ventricular outflow tract (literature review)
https://doi.org/10.29001/2073-8552-2025-2379
Abstract
Relevance. For almost six decades, in right ventricular outflow tract reconstruction the choice of a conduit has been and remains a chelleging task for cardiac surgeons. Among the vast number of valve prostheses offered, the choice of its material is still controversial. There are various allografts, xenografts, a combination of Dacron linear prostheses with an implanted locking element made of biological tissue and mechanical materials. Synthetic prostheses with handmade valves made of expanded polytetrafluoroethylene (ePTFE) and bioresorbable tissue-engineered conduits are also being popularized. The constant search for the best conduit is associated with unsatisfactory long-term performance results. The main problem relates to the inevitable biodegradation of the material from which the prosthesis is made. Durability is the main and most important indicator of the quality of conduits.
Aim: To review conduits for right ventricular outflow tract reconstruction based on the analysis of literature data.
Material and Methods. The research was carried out in the databases Medline (PubMed) and the Russian Science Citation Index (RSCI) using search queries, keywords and logical operators.
Results. According to a systematic literature analysis, the aspects of choosing a conduit for implantation in the pulmonary position were studied. The main complications, immediate and long-term postoperative results were highlighted.
Conclusion. Currently, there is no consensus on the choice of conduit. Quantaty of adult patients previously underwent interventions is increasing. Biodegradation has led to obstruction of the prosthesis, insufficiency of the locking element, or a combination of both situations.
Keywords
About the Authors
P. J. PetshakovskiyRussian Federation
Pavel J. Petshakovskiy, Cardiac Surgeon, Cardiac Surgery Department No. 1
167, 1 May str., Krasnodar, 350086, Russian Federation
M. V. Boriskov
Russian Federation
Maksim V. Boriskov, Cand. Sc.(Med.), Cardiac Surgeon, Cardiac Surgery Department No. 1
167, 1 May str., Krasnodar, 350086, Russian Federation
G. A. Efimochkin
Russian Federation
Georgii A. Efimochkin, Cand. Sci. (Med.), Cardiac Surgeon, Cardiac Surgery Department No. 1
167, 1 May str., Krasnodar, 350086, Russian Federation
O. A. Vanin
Russian Federation
Oleg A. Vanin, Cardiac Surgeon, Cardiac Surgery Department No. 1
167, 1 May str., Krasnodar, 350086, Russian Federation
E. I. Iofe
Russian Federation
Elena I. Iofe, Cardiac Surgeon, Cardiac Surgery Department No. 1
167, 1 May str., Krasnodar, 350086, Russian Federation
A. A. Pereverzeva
Russian Federation
Angelina A. Pereverzeva, Cardiac Surgeon, Cardiac Surgery Department No. 1
167, 1 May str., Krasnodar, 350086, Russian Federation
I. A. Tkachenko
Russian Federation
Ilya A. Tkachenko, Cardiac Surgeon, Cardiac Surgery Department No. 1
167, 1 May str., Krasnodar, 350086, Russian Federation
References
1. Latus H., Gummel K., Rupp S., Valeske K., Akintuerk H., Jux C. et al. Beneficial effects of residual right ventricular outflow tract obstruction on right ventricular volume and function in patients after repair of tetralogy of Fallot. Pediatr. Cardiol. 2013;34:424–430. https://doi.org/10.1007/s00246-012-0476-4.
2. Omel'chenko A.Ju., Gorbatyh Ju.N., Sojnov I.A., Vojtov A.V., Kuljabin Ju.Ju., Kornilov I.A. et al. Hemodynamic and functional assessment of the right ventricle after radical correction of the tetrad of Fallot. Medicinskij al'manah. 2016;4(44):93–99. [In Russ.]. https://doi.org/10.21145/2499-9954-2016-4-93-99.
3. Broberg C.S., Aboulhosn J., Mongeon F.-P., Kay J., Valente A.M., Khairy P. et al. Prevalence of left ventricular systolic dysfunction in adults with repaired tetralogy of fallot. Am. J. Cardiol. 2011;107:1215–1220. https://doi.org/10.1016/j.amjcard.2010.12.026.
4. Piazza L., Chessa M., Giamberti A., Bussadori C.M., Butera G., Negura D.G. et al. Timing of pulmonary valve replacement after tetralogy of Fallot repair. Expert Rev. Cardiovasc. Ther. 2012;10(7):917–923. https://doi.org/10.1586/erc.12.67.
5. Klinner W., Zenker R. Experience with correction of Fallot's tetralogy in 178 cases. Surgery. 1965;57:353–357. PMID: 14261573.
6. Rastelli G.C., Ongley P.A., David G.D., Kirklin J.W. Surgical repair for pulmonary valve atresia with coronary-pulmonary artery failure: Report of case. Mayo Clin. Proc. 1965;40:521–527. PMID: 14346186.
7. Ross D.N., Somerville J. Correction of pulmonary atresia with a homograft aortic valve. Lancet. 1966;2:1446–1447. https://doi.org/10.1016/s0140-6736(66)90600-3.
8. Rastelli G.C., McGoon D.C., Wallace R.B. Anatomic correction of transposition of the great arteries with ventricular septal defect and subpulmonary stenosis. J. Thorac. Cardiovasc. Surg. 1969;58:545–551. PMID: 5387997.
9. Carpantier A. From valvular xenograft to valvular bioprothesis (1965–1977). Med. Instrument. 1977;11:98–101.
10. Burakovskij V.I., Chekanov V.S. Krasikov L.I. Prosthetics of the trunk of the pulmonary artery with tetrad Fallot. Grudnaja hir.1976;5:3–7. [In Russ.].
11. Chekanov V.S., Krasikov L.I. The technique of manufacturing artificial valve-containing prostheses. Grudnaja hir. 1978;5:65–69. [In Russ.].
12. Podzolkov V.P., Zelenikin M.A., Gorbachevskij S.V., Zajcev V.V. The first experience of using alloaortic conduits in the correction of congenital heart defects. Grudnaja i serd.-sosud. Hir. 1993;5:25–27. [In Russ.].
13. Willetts R.G., Stickley J., Drury N.E., Mehta C., Stumper O., Khan N.E. et al. Four right ventricle to pulmonary artery conduit types. J. Thorac. Cardiovasc. Surg. 2021;162:1324–1333. https://doi.org/10.1016/j.jtcvs.2020.12.144.
14. Boethig D., Avsar M., Bauer U., Sarikouch S., Beerbaum P., Berger F. et al. Pulmonary valve prostheses: patient’s lifetime procedure load and durability. Evaluation of the German National Register for Congenital Heart Defects. Interact. Cardiovasc. Thorac. Surg. 2022;34:297–306. https://doi.org/10.1093/icvts/ivab233.
15. McMullan D.M., Oppido G., Alphonso N., Cochrane A.D., d’Udekem d’Acoz Y., Brizard C.P. Evaluation of downsized homograft conduits for right ventricle-to-pulmonary artery reconstruction. J. Thoracic. Cardiovasc. Surg. 2006;132:66–71. https://doi.org/10.1016/j.jtcvs.2006.02.041.
16. Meyns B., Jashari R., Gewillig M., Mertens L., Komárek A., Lesaffre E. et al. Factors influencing the survival of cryopreserved homografts. The second homograft performs as well as the first. Eur. J. Cardiothorac. Surg. 2005;28:211–216. https://doi.org/10.1016/j.ejcts.2005.03.041.
17. Tweddell J.S., Pelech A.N., Frommelt P.C., Mussatto K.A., Wyman J.D., Fedderly R.T. et al. Factors affecting longevity of homograft valves used in right ventricular outflow tract reconstruction for congenital heart disease. Circulation. 2000;102(suppl. 3):III130–135. https://doi.org/10.1161/01.cir.102.suppl_3.iii-130.
18. Boethig D., Goerler H., Westhoff-Bleck M., Ono M., Daiber A., Haverich A. et al. Evaluation of 188 consecutive homografts implanted in pulmonary position after 20 years. Eur. J. Cardiothorac. Surg. 2007;32:133–142. https://doi.org/10.1016/j.ejcts.2007.02.025.
19. Bielefeld M.R., Bishop D.A., Campbell D.N., Mitchell M.B., Grover F.L., Clarke D.R. Reoperative homograft right ventricular outflow tract reconstruction. Ann. Thorac. Surg. 2001;71:482–488. https://doi.org/10.1016/S0003-4975(00)02521.
20. Rodefeld M.D., Ruzmetov M., Turrentine M.W., Brown J.W. Reoperative right ventricular outflow tract conduit reconstruction: risk analyses at follow up. J. Heart Valve Dis. 2008;17:119–126. PMID: 18365579.
21. Konuma T., Devaney E.J., Bove E.L., Gelehrter S., Hirsch J.C., Tavakkol Z. et al. Performance of CryoValve SG decellularized pulmonary allografts compared with standard cryopreserved allografts. Ann. Thorac. Surg. 2009;88:849–855. https://doi.org/10.1016/j.athoracsur.2009.06.003.
22. DeLeon S.Y., Tuchek J.M., Bell T.J., Hofstra J., Vitullo D.A., Quinones J.A. et al. Early pulmonary homograft failure from dilatation due to distal pulmonary artery stenosis. Ann. Thorac. Surg. 1996;61:234–236; discussion 236–237. https://doi.org/10.1016/0003-4975(95)00940-X.
23. Burch P.T., Kaza A.K., Lambert L.M., Holubkov R., Shaddy R.E., Hawkins J.A. Clinical performance of decellularized cryopreserved valved allografts compared with standard allografts in the right ventricular outflow tract. Ann. Thorac. Surg. 2010;90:1301–1305. https://doi.org/10.1016/j.athoracsur.2010.05.024.
24. Ruzmetov M., Shah J.J., Geiss D.M., Fortuna R.S. Decellularized versus standard cryopreserved valve allografts for right ventricular outflow tract reconstruction: a single-institution comparison. J. Thorac. Cardiovasc. Surg. 2012;143:543–549. https://doi.org/10.1016/j.jtcvs.2011.12.032.
25. Shinoka T., Breuer C.K., Tanel R.E., Zund G., Miura T., Ma P.X. et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 1995;60:513–516. https://doi.org/10.1016/0003-4975(95)00733-4.
26. Sarikouch S., Horke A., Tudorache I. Decellularized fresh homografts for pulmonary valve replacement: a decade of clinical experience. Eur. J. Cardiothorac. Surg. 2016;50(2):281–290. https://doi.org/10.1093/ejcts/ezw050.
27. Bibevski S., Ruzmetov M., Fortuna R.S., Turrentine M.W., Brown J.W., Ohye R.G. Performance of synergraft decellularized pulmonary allografts compared with standard cryopreserved allografts: results from multiinstitutional data. Ann. Thorac. Surg. 2017;103(3):869–874. https://doi.org/10.1016/j.athoracsur.2016.07.068.
28. Nerem R.M. Cellular engineering. Ann. Biomed. Eng. 1991;19:529–545. https://doi.org/10.1007/BF02367396.
29. Shinoka T., Imai Y., Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N. Engl. J. Med. 2001;344:532–533. https://doi.org/10.1056/NEJM200102153440717
30. Sojnov I.A., Zhuravleva I.Ju., Kuljabin Ju.Ju., Nichaj N.R., Afanas'ev A.V., Aleshkevich N.P. et al. Valve-containing conduits in pediatric cardiac surgery. Hirurgija. Zhurnal im. N.I. Pirogova. 2018;1:75–81. [In Russ.]. https://doi.org/10.17116/hirurgia2018175-81
31. Hartz R.S., Deleon S.Y., Lane J., Dorotan J., Joyce J., Urbina E. et al. Medtronic freestyle valves in right ventricular outflow tract reconstruction. Ann. Thorac. Surg. 2003;76:1896–1900. https://doi.org/10.1016/s0003-4975(03)01301-8.
32. Brown J.W., Ruzmetov M., Rodefeld M.D., Vijay P., Darragh R.K. Valved bovine jugular vein conduits for right ventricular outflow tract reconstruction in children: an attractive alternative to pulmonary homograft. Ann. Thorac. Surg. 2006;82:909–916. https://doi.org/10.1016/j.athoracsur.2006.03.008.
33. Sekarski N., van Meir H., Rijlaarsdam M.E., Schoof P.H., Koolbergen D.R., Hruda J. et al. Right ventricular outflow tract reconstruction with the bovine jugular vein graft: 5 years’ experience with 133 patients. Ann. Thorac. Surg. 2007;84:599–605. https://doi.org/10.1016/j.athoracsur.2007.04.026.
34. Bautista-Hernandez V., Kaza A.K., Benavidez O.J., Pigula F. A. True aneurysmal dilatation of a Contegra conduit after right ventricular outflow tract reconstruction: A novel mechanism of conduit failure. Ann. Thorac. Surg. 2008;86:1976–1977. https://doi.org/10.1016/j.athoracsur.2008.04.104.
35. Bowman F.O., Hancock W.D., Malm J.R. A valve containing Dacron prosthesis. Arch. Surg. 1974;107:724–728. https://doi.org/10.1001/archsurg.1973.01350230076015.
36. Kloevekorn W.P., Meisner H., Paek S.U., Sebening F. Long-term results after right ventricular outflow tract reconstruction with porcine bioprosthetic conduits. J. Card. Surg. 1991;6(suppl_IV):624–626. https://doi.org/10.1111/jocs.1991.6.4s.624.
37. Takahashi Y., Tsutsumi Y., Monta O., Kato Y., Kohshi K., Sakamoto T. et al. Expanded polytetrafluoroethylene-valved conduit with bulging sinuses for right ventricular outflow tract reconstruction in adults. Gen. Thorac. Cardiovasc. Surg. 2010;58(1):14–18. https://doi.org/10.1007/s11748-009-0527-9.
38. Yamagishi M., Kurosawa H. Outflow reconstruction of tetralogy of Fallot using a Gore-Tex valve. Ann. Thorac. Surg. 1993;56:1414–1416; discussion 1416–1417. https://doi.org/10.1016/0003-4975(93)90700-r.
39. Brown J.W., Ruzmetov M., Vijay P., Rodefeld M.D., Turrentine M.W. Right ventricular outflow tract reconstruction with a polytetrafluoroethylene monocusp valve: a twelve-year experience. J. Thorac. Cardiovasc. Surg. 2007;133:1336–1343. https://doi.org/10.1016/j.jtcvs.2006.12.045.
40. Quintessenza J.A., Jacobs J.P., Morell V.O., Giroud J.M., Boucek R.J. Initial experience with a bicuspid polytetrafluoroethylene pulmonary valve in 41 children and adults: a new option for right ventricular outflow tract reconstruction. Ann. Thorac. Surg. 2005;79:924–931. https://doi.org/10.1016/j.athoracsur.2004.05.045.
41. Scavo V.A. Jr., Turrentine M.W., Aufiero T.X., Sun K., Binford R., Carlos G., Brown J. W. Monocusp valve and transannular patch reconstruction of the right ventricular outflow tract: an experimental study. ASAIO J. 1998;44:M480–M485. https://doi.org/10.1097/00002480-199809000-00032.
42. Ando M., Takahashi Y. Ten-year experience with handmade trileaflet polytetrafluoroethylene valved conduit used for pulmonary reconstruction. J Thorac. Cardiovasc. Surg. 2009;137:124–131. https://doi.org/10.1016/j.jtcvs.2008.08.060.
43. Miyazaki T., Yamagishi M., Maeda Y., Yamamoto Y., Taniguchi S., Sasaki Y. Expanded polytetrafluoroethylene conduits and patches with bulging sinuses and fan-shaped valves in right ventricular outflow tract reconstruction: multicenter study in Japan. J. Thorac. Cardiovasc. Surg. 2011;142:1122–1129. https://doi.org/10.1016/j.jtcvs.2011.08.018.
44. Chang T.I., Chang C.I. An efficient way to make a trileaflet conduit for pulmonary valve replacement. Ann. Thorac. Surg. 2013;96:163–165. https://doi.org/10.1016/j.athoracsur.2013.09.081.
45. Miyazaki T., Yamagishi M., Maeda Y., Taniguchi S., Fujita S., Hongu H. et al. Long-term outcomes of expanded polytetrafluoroethylene conduits with bulging sinuses and a fan-shaped valve in right ventricular outflow tract reconstruction. J. Thorac. Cardiovasc. Surg. 2018;155:2567–2576. https://doi.org/10.1016/j.jtcvs.2017.12.137.
46. Poynter J.A., Eghtesady P., McCrindle B.W., Walters H.L. III, Kirshbom P.M., Blackstone E.H. et al. Association of pulmonary conduit type and size with durability in infants and young children. Ann. Thorac. Surg. 2013;96:1695–1701. https://doi.org/10.1016/j.athoracsur.2013.05.074.
47. Kwak J.G., Bang J.H., Cho S., Kim E.R., Shih B.C., Lee C.H. et al. Long-term durability of bioprosthetic valves in pulmonary position: pericardial versus porcine valves. J. Thorac. Cardiovasc. Surg. 2020;160:476–484. https://doi.org/10.1016/j.jtcvs.2019.11.134.
48. Kan C.D., Wang J.N., Chen W.L., Lu P.J., Chan M.Y., Lin C.H. et al. Applicability of handmade expanded polytetrafluoroethylene trileaflet-valved conduits for pulmonary valve reconstruction: an ex vivo and in vivo study. J. Thorac. Cardiovasc. Surg. 2018;155:765–774. https://doi.org/10.1016/j.jtcvs.2017.09.049.
49. Suzuki I., Shiraishi Y., Yabe S., Tsuboko Y., Sugai T.K., Matsue K. et al. Engineering analysis of the effects of bulging sinuses in a newly designed pediatric pulmonary heart valve on hemodynamic function. J. Artif. Organs. 2012;15:49–56. https://doi.org/10.1007/s10047-011-0609-1.
50. Chang T.I., Hsu K.H., Luo C.W., Yen J.H., Lu P.C., Chang C.I. In vitro study of trileaflet polytetrafluoroethylene conduit and its valve-in-valve transformation. Interact. Cardio. Vasc. Thorac. Surg. 2020;30:408–416. https://doi.org/10.1093/icvts/ivz274.
Supplementary files
Review
For citations:
Petshakovskiy P.J., Boriskov M.V., Efimochkin G.A., Vanin O.A., Iofe E.I., Pereverzeva A.A., Tkachenko I.A. Reconstruction of the right ventricular outflow tract (literature review). Siberian Journal of Clinical and Experimental Medicine. (In Russ.) https://doi.org/10.29001/2073-8552-2025-2379


.png)

























