Diagnostic value of the fractional flow reserve: attention, blood rheology!
https://doi.org/10.29001/2073-8552-2025-40-4-19-27
Abstract
Assessment of hemodynamic significance of coronary artery stenosis has become crucial in determining the treatment strategy for coronary artery disease (CAD). Consequently, invasive methods for evaluating the functional significance of stenosis have become widely used. Additionally, diagnostic technologies that combine coronary angiography and mathematical modeling of coronary flow have also been employed for this purpose.
This paper presents an analytical review of the assessment of the functional significance of coronary artery stenosis using the fractional flow reserve (FFR) method. The review covers the fundamental aspects of the FFR method, its practical application, and its diagnostic value. Significant attention is given to blood rheology, particularly dynamic viscosity. Since dynamic viscosity is a key determinant of hemodynamic resistance to blood flow, especially in microcirculation, this factor can influence the interpretation of the results in coronary stenosis assessment.
Keywords
About the Authors
I. S. BessonovРоссия
Ivan S. Bessonov - Dr. Sci. (Med.), Head of the Laboratory of X-ray Endovascular Diagnostic and Treatment Methods, Scientific Department of Instrumental Research Methods, Tyumen Cardiology Research Center, Tomsk NRMC.
111, Melnikaite str., Tyumen, 625026
I. O. Starodumov
Россия
Ilya O. Starodumov - Cand. Sci. (Phys.-Math.), Senior Research Scientist, Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University.
19, Mira Str., Ekaterinburg, 620002
A. A. Shadrin
Россия
Artem A. Shadrin - Junior Research Scientist, Laboratory of X-ray Endovascular Diagnostic and Treatment Methods, Scientific Department of Instrumental Research Methods; Postgraduate Student, Tyumen Cardiology Research Center, Tomsk NRMC.
111, Melnikaite str., Tyumen, 625026
K. E. Makhaeva
Россия
Ksenia E. Makhaeva - Research Engineer, Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University.
19, Mira Str., Ekaterinburg, 620002
P. V. Mikushin
Россия
Pavel V. Mikushin, Junior Research Scientist, Laboratory of Multiphase Physical and Biological Media Modeling, Ural Federal University, Yekaterinburg, Russia; Postgraduate Student, Moscow Institute of Physics and Technology (MIPT).
19, Mira Str., Ekaterinburg, 620002; 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701
A. V. Muravyov
Россия
Alexey V. Muravyov - Dr. Sci. (Biol.), Professor, Department of Medical and Biological Foundations of Sports, Ushinsky Yaroslavl State Pedagogical University.
108/1, Republicanskaya Str., Yaroslavl, 150000
V. V. Chestukhin
Россия
Vasily V. Chestukhin - Dr. Sci. (Med.), Professor, Scientific Consultant, Department of X-ray Endovascular Diagnostics and Surgery, N.V. Sklifosovsky Research Institute for Emergency Medicine.
3, B. Sykharevskaya Sq., Moscow, 129090
F. A. Blyakhman
Россия
Felix A. Blyakhman - Dr. Sci. (Biol.), Professor, Department of Medical Physics and Digital Technologies, Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia; Professor, Institute of Natural Sciences and Mathematics, Ural Federal University.
19, Mira Str., Ekaterinburg, 620002; 3, Repin Str., Ekaterinburg, 620028
References
1. Tonino P.A., Fearon W.F., De Bruyne B., Oldroyd K.G., Leesar M.A., Ver Lee P.N. et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study: fractional flow reserve versus angiography in multivessel evaluation. J. Am. Coll. Cardiol. 2010;55:2816– 2821. https://doi.org/10.1016/j.jacc.2009.11.096
2. Pijls N.H., Fearon W.F., Tonino P.A., Siebert U., Ikeno F., Bornschein B. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J. Am. Coll. Cardiol. 2010;56:177–184. https://doi.org/10.1016/j.jacc.2010.04.012
3. Haney A.C., Salatzki J., Hund H., Friedrich M.G., Giannitsis E., Frey N. et al. Prognostic value of negative stress cardiac magnetic resonance imaging in patients with moderate-severe coronary artery stenosis. Front. Cardiovasc. Med. 2023;10:1264374. https://doi.org/10.3389/fcvm.2023.1264374
4. Picano E., Ciampi Q., Gaibazzi N., Landi P., Carpeggiani C., Cortigiani L. et al. The clinical use of stress echocardiography in chronic coronary syndromes and beyond coronary artery disease: a clinical consensus statement from the European Association of Cardiovascular Imaging of the ESC. Eur. Heart J. Cardiovasc. Imaging. 2024;25(2):e65– e90. https://doi.org/10.1093/ehjci/jead250
5. Lupanov V.P. The choice of non-invasive stress test in the diagnosis of coronary heart disease (scientific review). Meditsinskiy sovet = Medical Council. 2018;16:62–70. (In Russ.). https://doi.org/10.21518/2079701X-2018-16-62-70
6. Nørgaard B.L., Jensen J.M., Blanke P., Sand N.P., Rabbat M., Leipsic J. Coronary CT angiography derived fractional flow reserve: The game changer in noninvasive testing. Curr. Cardiol. Rep. 2017;19:112. https://doi.org/10.1007/s11886-017-0923-1
7. Pijls N.H., de Bruyne B., Peels K., van der Voort P.H., Bonnier H.J., Bartunek J. et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N. Engl. J. Med. 1996;334:1703–1708. https://doi.org/10.1056/NEJM199606273342604
8. Suyundukova A.T., Demkin V.P., Mochula A.V., Gulya M.O., Maltseva A.N., Zavadovsky K.V. State of the art mathematical methods of the coronary blood flow modelling: background and clinical value. Kardiologiia. 2023;63(3):77–84. (In Russ.). https://doi.org/10.18087/cardio.2023.3.n1930
9. Pijls N.H., Van Gelder B., Van der Voort P., Peels K., Bracke F.A., Bonnier H.J. et al. Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92:3183–3193. https://doi.org/10.1161/01.cir.92.11.3183
10. Bech G.J., De Bruyne B., Pijls N.H., de Muinck E.D., Hoorntje J.C., Escaned J. et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation. 2001;103:2928–2934. https://doi.org/10.1161/01.cir.103.24.2928
11. Tonino P.A., De Bruyne B., Pijls N.H., Siebert U., Ikeno F., van' t Veer M. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 2009;360:213–224. https://doi.org/10.1056/NEJMoa0807611
12. Elbadawi A., Sedhom R., Ghoweba M., Etewa A.M., Kayani W., Rahman F. Contemporary use of coronary physiology in cardiology. Cardiol. Ther. 2023;12:589–614. https://doi.org/10.1007/s40119-02300329-2
13. De Bruyne B., Pijls N.H., Kalesan B., Barbato E., Tonino P.A., Piroth Z. et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N. Engl. J. Med. 2012;367:991–1001. https://doi.org/10.1056/NEJMoa1205361
14. Meuwissen M., Chamuleau S.A., Siebes M., Schotborgh C.E., Koch K.T., de Winter R.J. et al. Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation. 2001;103:184–187. https://doi.org/10.1161/01.cir.103.2.184
15. Meuwissen M., Siebes M., Chamuleau S., Tijssen J., Spaan J., Piek J. Intracoronary pressure and flow velocity for hemodynamic evaluation of coronary stenoses. Expert Rev. Cardiovasc. Ther. 2003;1:471–479. https://doi.org/10.1586/14779072.1.3.471
16. Bishop A.H., Samady H. Fractional flow reserve: critical review of an important physiologic adjunct to angiography. Am. Heart J. 2004;147:792– 802. https://doi.org/10.1016/j.ahj.2003.12.009
17. Demkin V.P., Mochula A.V., Zavadovsky K.V., Suyundukova A.T., Gulya M.O., Maltseva A.N. The influence of dynamic blood viscosity on coronary blood flow in stenotic artery. Russ. Phys. J. 2022;64:2364– 2370. https://doi.org/10.1007/s11182-022-02590-9
18. Gashi K. The impact of model assumptions on coronary blood flow computations. [Phd. Thesis 1, Biomedical Engineering]. Technische Universiteit Eindhoven. 2019. DOI: 10.3929/ethz-b-000402106. URL: https://pure.tue.nl/ws/portalfiles/portal/127280784/20190626_Gashi.pdf (10.12.2024).
19. Akdi A., Çetin E.H., Çakmak Karaaslan Ö., Erdöl M.A., Özilhan M.O., Maden O., Aras D. The role of whole blood viscosity estimated by De Simone’s Formula in Evaluation of Fractional Flow Reserve. E. J. Cardiovasc. Med. 2022;10(1):18–24. https://doi.org/10.32596/ejcm.galenos.2022.2021-11-059
20. Roux E., Bougaran P., Dufourcq P., Couffinhal T. Fluid shear stress sensing by the endothelial layer. Front. Physiol. 2020;11:861. https://doi.org/10.3389/fphys.2020.00861
21. Alexy T., Detterich J., Connes P., Toth K., Nader E., Kenyeres P. et al. Physical properties of blood and their relationship to clinical conditions. Front. Physiol. 2022;13:906768. https://doi.org/10.3389/fphys.2022.906768
22. Ahmed S. Study of blood flow with effects of slip in arterial stenosis due to presence of transverse magnetic field. Int. J. Manag. Inf. Technol. 2013;4:215–226. https://doi.org/10.24297/ijmit.v4i2.1902
23. Picart C., Piau J.M., Galliard H., Carpentier P. Human blood shear yield stress and its hematocrit dependence. J. Rheol. 1998;42:1–12. https://doi.org/10.1122/1.550883
24. Clifford P.S. Local control of blood flow. Adv Physiol Educ. 2011;35(1):5–15. https://doi.org/10.1152/advan.00074.2010
25. Popel A.S., Johnson P.C. Microcirculation and Hemorheology. Annu. Rev. Fluid. Mech. 2005;37(1):43–69. https://doi.org/10.1146/annurev.fluid.37.042604.133933
26. Nader E., Skinner S., Romana M., Fort R., Lemonne N., Guillot N. et al. Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 2019;10:1329. https://doi.org/10.3389/fphys.2019.01329
27. Antonov V.F., Kozlova E.K., Chernysh A.M. Physics and Biophysics. (In Russ.). Moscow: GEOTAR-Media; 2023:472. ISBN: 978-5-97042401-8.
28. Mahalingam A., Gawandalkar U.U., Kini G., Buradi A., Araki T., Ikeda N. et al. Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries. Cardiovasc. Diagn. Ther. 2016;6:208–220. https://doi.org/10.21037/cdt.2016.03.08
29. Pandey R., Kumar M., Majdoubi J., Rahimi-Gorji M., Srivastav V.K. A review study on blood in human coronary artery: Numerical approach. Comput. Methods Programs Biomed. 2020;187:105243. https://doi.org/10.1016/j.cmpb.2019.105243
30. James M.E., Papavassiliou D.V., O’Rear E.A. Use of computational fluid dynamics to analyze blood flow, hemolysis and sublethal damage to red blood cells in a bileaflet artificial heart valve. Fluids. 2019;4(1):19. https://doi.org/10.3390/fluids4010019
31. Jahangiri M., Saghafian M., Sadeghi M.R. Numerical study of turbulent pulsatile blood flow through stenosed artery using fluid-solid interaction. Comput. Math. Methods Med. 2015;2015:515613. https://doi.org/10.1155/2015/515613
32. Cokelet G.R., Brown J.R., Codd S.L., Seymour J.D. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Biorheology. 2005;42:385–399.
33. Balogh P., Bagchi P. The cell-free layer in simulated microvascular networks. J. Fluid Mech. 2019;864:768–806. https://doi.org/10.1017/jfm.2019.45
34. Gracka M., Lima R., Miranda J.M., Student S., Melka B., Ostrowski Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Comput. Methods Programs Biomed. 2022;226:107117. https://doi.org/10.1016/j.cmpb.2022.107117
35. Starodumov I., Makhaeva K., Zubarev A., Bessonov I., Sokolov S., Mikushin P. et al. Modeling of local hematocrit for blood flow in stenotic coronary vessels. Fluids. 2023;8:230. https://doi.org/10.3390/fluids8080230
36. Sulaiman N., Soon J., Leipsic J. Coronary CT angiography-derived fractional flow reserve. Curr. Radiol. Rep. 2016;4(8):46. https://doi.org/10.1007/s40134-016-0170-z
37. Li Y., Chen H. The application of quantitative flow ratio via 3-dimensional coronary angiography in clinical cardiology: A review. Discov. Med. 2022;33:129–135. URL: https://pubmed.ncbi.nlm.nih.gov/36274241/ (11.12.2024).
38. Cortes C., Carrasco-Moraleja M., Aparisi A., Rodriguez-Gabella T., Campo A., Gutiérrez H. et al. Quantitative flow ratio-Meta-analysis and systematic review. Catheter Cardiovasc. Interv. 2021;97(5):807–814. https://doi.org/10.1002/ccd.28857
39. Hu F., Ding D., Westra J., Li Y., Yu W., Wang Z. et al. Diagnostic accuracy of optical flow ratio: an individual patient-data meta-analysis. EuroIntervention. 2023;19:e145–e154. https://doi.org/10.4244/EIJ-D-22-01098
40. Xing Z., Pei J., Huang J., Hu X., Gao S. Diagnostic performance of QFR for the evaluation of intermediate coronary artery stenosis confirmed by fractional flow reserve. Braz. J. Cardiovasc. Surg. 2019;34:165–172. https://doi.org/10.21470/1678-9741-2018-0234
41. Huang J., Emori H., Ding D., Kubo T., Yu W., Huang P. et al. Diagnostic performance of intracoronary optical coherence tomography-based versus angiography-based fractional flow reserve for the evaluation of coronary lesions. EuroIntervention. 2020;16:568–576. https://doi.org/10.4244/EIJ-D-19-01034
42. Asher A., Wragg A., Davies C. Review: FFRCT Changing the Face of Cardiac CT. Curr. Cardiovasc. Imaging Rep. 2020;13:38. https://doi.org/10.1007/s12410-020-09548-w
43. Westerhof N., Boer C., Lamberts R.R., Sipkema P. Crosstalk between cardiac muscle and coronary vasculature. Physiol. Rev. 2006;86:1263– 1308. https://doi.org/10.1152/physrev.00029.2005
44. Chestukhin V.V., Blyakhman F.A. Coronary paradox. Russian Journal of Transplantology and Artificial Organs. 2022;24(4):145–151. (In Russ.). https://doi.org/10.15825/1995-1191-2022-4-145-151
45. Mirramezani M., Diamond S.L., Litt H.I., Shadden S.C. Reduced order models for transstenotic pressure drop in the coronary arteries. J. Biomech. Eng. 2019;141:031005. https://doi.org/10.1115/1.4042184
46. Karthikeyan J.S. Effect of bolus viscosity on carbohydrate digestion and glucose absorption processes: an in vitro gastrointestinal study and development of a mathematical model. Rutgers, The State University of New Jersey. Publication date: 2019/10. https://doi.org/10.7282/t3-fnpsan96
47. Fossan F.E., Mariscal-Harana J., Alastruey J., Hellevik L.R. Optimization of topological complexity for one-dimensional arterial blood flow models. J. R. Soc. Interface. 2018;15:20180546. https://doi.org/10.1098/rsif.2018.0546
48. Scoccia A., Bedogni F., Biscaglia S., Tebaldi M., Tumscitz C., Campo G. Angiography-based fractional flow reserve: state of the art. Curr. Cardiol. Rep. 2022;24:667–678. https://doi.org/10.1007/s11886-022-01687-4
Review
For citations:
Bessonov I.S., Starodumov I.O., Shadrin A.A., Makhaeva K.E., Mikushin P.V., Muravyov A.V., Chestukhin V.V., Blyakhman F.A. Diagnostic value of the fractional flow reserve: attention, blood rheology! Siberian Journal of Clinical and Experimental Medicine. 2025;40(4):19-27. (In Russ.) https://doi.org/10.29001/2073-8552-2025-40-4-19-27
JATS XML


.png)

























