Risk factors for cognitive impairments in children and adolescents with type 1 diabetes mellitus: pathophysiological aspects (literature review)
https://doi.org/10.29001/2073-8552-2025-40-4-37-44
Abstract
Type 1 diabetes mellitus (T1DM) in children and adolescents is associated not only with metabolic disturbances but also with the development of cognitive impairments, which may initially present subclinically. These impairments reflect central nervous system involvement driven by a variety of pathophysiological mechanisms. Recent studies have demonstrated that the cognitive status of children with T1DM is influenced by both acute and chronic factors, including episodes of hypoand hyperglycemia, diabetic ketoacidosis, disease duration, and poor glycemic control.
Aim. Summarize current literature on the mechanisms underlying cognitive impairment in T1DM, as well as the possibilities for early diagnosis and prevention. The roles of neuroinflammation, oxidative stress, altered glucose transporter function, impaired neurogenesis, microvascular complications, gut dysbiosis, and psychiatric comorbidities in the pathogenesis of cerebral dysfunction are discussed. Particular attention is given to the methodological challenges of assessing cognitive status in the pediatric population, the potential use of laboratory and neuroimaging markers, and their clinical applicability. The review also highlights the impact of cognitive impairment on learning, social adaptation, and quality of life in patients. The data presented emphasize the need for the development of personalized strategies for prevention and intervention. Cognitive disturbances in T1DM are increasingly recognized as a major factor influencing long-term prognosis and the adaptive capacity of young patients.
Keywords
About the Authors
K. S. KamaevaРоссия
Ksenia S. Kamaeva – student.
310, Mira str., Stavropol, 355017
Yu. V. Bykov
Россия
Yuri V. Bykov - Cand. Sci. (Med.) Assistant Professor, Department of Anesthesiology, Resuscitation and Emergency Medicine.
310, Mira str., Stavropol, 355017
References
1. Bykov Yu.V., Baturin V.A. Diabetic encephalopathy in diabetes mellitus in childhood: pathophysiology and clinical manifestations (review). Saratov Scientific and Medical Journal. 2022;18(1):46–49. (In Russ.).
2. Bykov Yu.V. Oxidative stress and diabetic encephalopathy: pathophysiological aspects. Modern problems of science and education. 2022;6–2. (In Russ.). https://doi.org/10.17513/spno.32314
3. Jin C.Y., Yu S.W., Yin J.T., Yuan X.Y., Wang X.G. Corresponding risk factors between cognitive impairment and type 1 diabetes mellitus: A narrative review. Heliyon. 2022;8(8):e10073. https://doi.org/10.1016/j.heliyon.2022.e10073
4. van Duinkerken E., Ijzerman R.G., Klein M., Moll A.C., Snoek F.J., Scheltens P. et al. Disrupted subject-specific gray matter network properties and cognitive dysfunction in type 1 diabetes patients with and without proliferative retinopathy. Hum. Brain Mapp. 2016;37:1194–1208. https://doi.org/10.1002/hbm.23096
5. Bykov Yu.V., Baturin V.A. Cognitive impairment in type 1 diabetes mellitus. Siberian Scientific Medical Journal. 2023;43(1):4–12. (In Russ.)]. https://doi.org/10.18699/SSMJ20230101
6. Moheet A., Mangia S., Seaquist E.R. Impact of diabetes on cognitive function and brain structure. Ann. N. Y. Acad. Sci. 2015;1353:60–71. https://doi.org/10.1111/nyas.12807
7. Nunley K.A., Rosano C., Ryan C.M., Jennings J.R., Aizenstein H.J., Zgibor J.C. et al. Clinically relevant cognitive impairment in middleaged adults with childhood-onset type 1 diabetes. Diabetes Care. 2015;38(9):1768–1776. https://doi.org/10.2337/dc15-0041
8. Urakami T. Severe hypoglycemia: Is it still a threat for children and adolescents with type 1 diabetes? Front. Endocrinol. (Lausanne). 2020;11:609. https://doi.org/10.3389/fendo.2020.00609
9. Koepsell H. Glucose transporters in brain in health and disease. Pflügers Archiv. 2020;472:1299–1343. https://doi.org/10.1007/s00424-02002441-x
10. Languren G., Montiel T., Ramirez-Lugo L., Balderas I., SánchezChávez G., Sotres-Bayón F. et al. Recurrent moderate hypoglycemia exacerbates oxidative damage and neuronal death leading to cognitive dysfunction after the hypoglycemic coma. J. Cerebr. Blood Flow Metabol. 2019;39:808–821. https://doi.org/10.1177/0271678X17733640
11. McNeilly A.D., Gallagher J.R., Dinkova-Kostova A.T., Hayes J.D., Sharkey J., Ashford M.L. et al. Nrf2-Mediated neuroprotection against recurrent hypoglycemia is insufficient to prevent cognitive impairment in a rodent model of type 1 diabetes. Diabetes. 2016;65:3151–3160. https://doi.org/10.2337/db15-1653
12. Yaffe K., Falvey C.M., Hamilton N., Harris T.B., Simonsick E.M., Strotmeyer E.S. et al. Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern. Med. 2013;173:1300–1306. https://doi.org/10.1001/jamainternmed.2013.6176
13. Cato A., Hershey T. Cognition and type 1 diabetes in children and adolescents. Diabetes Spectr. 2016;29:197–202. https://doi.org/10.2337/ds16-0036
14. Shalimova A., Graff B., Gasecki D., Wolf J., Sabisz A., Szurowska E. et al. Cognitive dysfunction in type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 2019;104:2239–2249. https://doi.org/10.1210/jc.2018-01315
15. Aberdeen H., Battles K., Taylor A., Garner-Donald J., DavisWilson A., Rogers B.T. et al. The aging vasculature: glucose tolerance, hypoglycemia and the role of the serum response factor. J. Cardiovasc. Dev. Dis. 2021;8(5):58. https://doi.org/10.3390/jcdd8050058
16. Li X.R., Yu P.Q., Yu Y.H., Xu T., Liu J., Cheng Y. et al. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: involvement of SIRT1-mTOR/NF-κB signaling pathway. Int. Immunopharm. 2021;95:107545. https://doi.org/10.1016/j.intimp.2021.107545
17. Yang X., Chen Y.Q., Zhang W.S., Zhang Z., Yang X., Wang P. et al. Association between inflammatory biomarkers and cognitive dysfunction analyzed by MRI in diabetes patients. Diabetes Metab. Syndr. Obes. 2020;13:4059–4065. https://doi.org/10.2147/DMSO.S271160
18. Xu T., Liu J., Li X.R., Yu Y., Luo X., Zheng X. et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol. Neurobiol. 2021;58:3848–3862. https://doi.org/10.1007/s12035-021-02390-1
19. Rom S., Zuluaga-Ramirez V., Gajghate S., Seliga A., Winfield M., Heldt N.A. et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models. Mol. Neurobiol. 2019;56:1883–1896. https://doi.org/10.1007/s12035-018-1195-5
20. Wang J.C., Wang L., Zhou J., Qin A., Chen Z.J. The protective effect of formononetin on cognitive impairment in streptozotocin (STZ)-induced diabetic mice. Biomed. Pharmacother. 2018;106:1250–1257. https://doi.org/10.1016/j.biopha.2018.07.063
21. Chen H.J., Lee Y.J., Huang C.C., Lin Y.F., Li S.T. Serum brain-derived neurotrophic factor and neurocognitive function in children with type 1 diabetes. J. Formos. Med. Assoc. 2021;120(Pt.1):157–164. https://doi.org/10.1016/j.jfma.2020.04.011
22. Ryan C.M., van Duinkerken E., Rosano C. Neurocognitive consequences of diabetes. Am. Psychol. 2016;71(7):563–576. https://doi.org/10.1037/a0040455
23. Li W., Huang E., Gao S.J. Type 1 diabetes mellitus and cognitive impairments: a systematic review. J. Alzheimers Dis. 2017;57:29–36. https://doi.org/10.3233/JAD-161250
24. Nakano M., Nagaishi K., Konari N., Saito Y., Chikenji T., Mizuete Y. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci. Rep. 2016;6:24805. https://doi.org/10.1038/srep24805
25. Wang X., Yu S., Hu J.P., Wang C.Y., Wang Y., Liu H.X. Streptozotocininduced diabetes increases amyloid plaque deposition in AD transgenic mice through modulating AGEs/RAGE/NF-κB pathway. Int. J. Neurosci. 2014;124:601–608. https://doi.org/10.3109/00207454.2013.866110
26. Glaser N., Sasaki-Russell J., Cohen M., Little C., O'Donnell M., Sall J. Histological and cognitive alterations in adult diabetic rats following an episode of juvenile diabetic ketoacidosis: Evidence of permanent cerebral injury. Neurosci. Lett. 2017;650:161–167. https://doi.org/10.1016/j.neulet.2017.04.035
27. Glaser N., Chu S., Hung B., Fernandez L., Wulff H., Tancredi D. et al. Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model. BMJ Open Diabetes Res. Care. 2020;8(2):e001793. https://doi.org/10.1136/bmjdrc-2020-001793
28. Tomkins M., McCormack R., O’Connell K., Agha A., Merwick A. Metabolic encephalopathy secondary to diabetic ketoacidosis: a case report. BMC Endocr. Disord. 2019;19:71. https://doi.org/10.1186/s12902-019-0398-8
29. Ghetti S., Kuppermann N., Rewers A., Myers S.R., Schunk J.E., Stoner M.J. et al. Cognitive function following diabetic ketoacidosis in children with new-onset or previously diagnosed type 1 diabetes. Diabetes Care. 2020;43:2768–2775. https://doi.org/10.2337/dc20-0187
30. Sayed M.H., Hegazi M.A., Abdulwahed K., Moussa K., El-Deek B.S., Gabel H. et al. Risk factors and predictors of uncontrolled hyperglycemia and diabetic ketoacidosis in children and adolescents with type 1 diabetes mellitus in Jeddah, western Saudi Arabia. J. Diabetes. 2017;9(2):190–199. https://doi.org/10.1111/1753-0407.12404
31. Zheng F.F., Yan L., Yang Z.C., Zhong B.L., Xie W.X. HbA1c, diabetes and cognitive decline: the English longitudinal study of ageing. Diabetologia. 2018;61(4):839–848. https://doi.org/10.1007/s00125-017-4541-7
32. He J., Li S.C., Liu F., Zheng H., Yan X., Xie Y. et al. Glycemic control is related to cognitive dysfunction in Chinese children with type 1 diabetes mellitus. J. Diabetes. 2018;10(12):948–957. https://doi.org/10.1111/1753-0407.12775
33. Kirchhoff B.A., Jundt D.K., Doty T., Hershey T. A longitudinal investigation of cognitive function in children and adolescents with type 1 diabetes mellitus. Pediatr. Diabetes. 2017;18(6):443–449. https://doi.org/10.1111/pedi.12414
34. Pourabbasi A., Tehrani-Doost M., Qavam S.E., Karijani B. Evaluation of the correlation between type 1 diabetes and cognitive function in children and adolescents, and comparison of this correlation with structural changes in the central nervous system: a study protocol. BMJ Open. 2016;6(4):e007917. https://doi.org/10.1136/bmjopen-2015-007917
35. Song J.W., Cui S.H., Chen Y.M., Ye X., Huang X., Su H. et al. Disrupted regional cerebral blood flow in children with newly-diagnosed type 1 diabetes mellitus: an arterial spin labeling perfusion magnetic resonance imaging study. Front. Neurol. 2020;11:572. https://doi.org/10.3389/fneur.2020.00572
36. Bjornstad P., Schäfer M., Truong U., Cree-Green M., Pyle L., Baumgartner A. et al. Metformin improves insulin sensitivity and vascular health in youth with type 1 diabetes mellitus. Circulation. 2018;138:2895– 2907. https://doi.org/10.1161/CIRCULATIONAHA.118.035525
37. Awad A., Lundqvist R., Rolandsson O., Sundstrom A., Eliasson M. Lower cognitive performance among long-term type 1 diabetes survivors: a case–control study. J. Diabet. Complicat. 2017;31(8):1328–1331. https://doi.org/10.1016/j.jdiacomp.2017.04.023
38. Tonoli C., Heyman E., Roelands B., Pattyn N., Buyse L., Piacentini M.F. et al. Type 1 diabetes-associated cognitive decline: a meta-analysis and update of the current literature. J. Diabetes. 2014;6(6):499–513. https://doi.org/10.1111/1753-0407.12193
39. Pal K., Mukadam N., Petersen I., Cooper C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: a systematic review and meta-analysis. Soc. Psychiatr. Psychiatr. Epidemiol. 2018;53(11):1149–1160. https://doi.org/10.1007/s00127-018-1581-3
40. Amutha A., Ranjit U., Anjana R.M., Shanthi C.S., Rajalakshmi R., Venkatesan U. et al. Clinical profile and incidence of microvascular complications of childhood and adolescent onset type 1 and type 2 diabetes seen at a tertiary diabetes center in India. Pediatr. Diabetes. 2021;22(1):67–74. https://doi.org/10.1111/pedi.13033
41. Sacre J.W., Magliano D.J., Zimmet P.Z., Polkinghorne K.R., Chadban S.J., Anstey K.J., Shaw J.E. Associations of chronic kidney disease markers with cognitive function: a 12-year follow-up study. J. Alzheimers Dis. 2019;70(s1):S19– S30. https://doi.org/10.3233/JAD180498
42. Gupta P., Gan A.T.L., Man R.E.K. Fenwick E.K., Sabanayagam C., Mitchell P. et al. Association between diabetic retinopathy and incident cognitive impairment. Br. J. Ophthalmol. 2019;103:1605–1609. https://doi.org/10.1136/bjophthalmol-2018-312807
43. Fakih W., Mroueh A., Salah H., Eid A.H., Obeid M., Kobeissy F. et al. Dysfunctional cerebrovascular tone contributes to cognitive impairment in a non-obese rat model of prediabetic challenge: role of suppression of autophagy and modulation by anti-diabetic drugs. Biochem. Phramacol. 2020;178:114041. https://doi.org/10.1016/j.bcp.2020.114041
44. Daulatzai M.A. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J. Neurosci. Res. 2017;95(4):943–972. https://doi.org/10.1002/jnr.23777
45. Gareau M.G. Cognitive function and the microbiome. Int. Rev. Neurobiol. 2016;131:227–246. https://doi.org/10.1016/bs.irn.2016.08.001
46. Zheng H., Xu P.T., Jiang Q.Y., Xu Q., Zheng Y., Yan J. et al. Depletion of acetate-producing bacteria from the gut microbiota facilitates cognitive impairment through the gut-brain neural mechanism in diabetic mice. Microbiome. 2021;9:145. https://doi.org/10.1186/s40168-021-01088-9
47. Ma X.Y., Xiao W.C., Li H., Pang J., Xue F., Wan L. et al. Metformin restores hippocampal neurogenesis and learning and memory via regulating gut microbiota in the obese mouse model. Brain Behav. Immun. 2021;95:68–83. https://doi.org/10.1016/j.bbi.2021.02.011
48. Kumar N., Singh V.B., Meena B.L., Kumar D., Kumar H., Saini M.L. et al. Mild cognitive impairment in young type 1 diabetes mellitus patients and correlation with diabetes control, lipid profile, and high-sensitivity C-reactive protein. Indian J. Endocrinol. Metab. 2018;22(6):780–784. https://doi.org/10.4103/ijem.IJEM_58_18
49. Noori H., Gheini M.R., Rezaeimanesh N., Saeedi R., Aliabadi H.R., Sahraian M.A. et al. The correlation between dyslipidemia and cognitive impairment in multiple sclerosis patients. Mult. Scler. Relat. Disord. 2019;36:101415. https://doi.org/10.1016/j.msard.2019.101415
50. Salameh T.S., Rhea E.M., Banks W.A., Hanson A.J. Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease. Exp. Biol. Med. 2016;241(15):1676–1683. https://doi.org/10.1177/1535370216660770
Review
For citations:
Kamaeva K.S., Bykov Yu.V. Risk factors for cognitive impairments in children and adolescents with type 1 diabetes mellitus: pathophysiological aspects (literature review). Siberian Journal of Clinical and Experimental Medicine. 2025;40(4):37-44. (In Russ.) https://doi.org/10.29001/2073-8552-2025-40-4-37-44
JATS XML


.png)

























