Selective cerebral and coronary perfusion in the correction of coarctation of the aorta with tubular aortic arch hypoplasia (literature review)
https://doi.org/10.29001/2073-8552-2019-34-4-83-90
Abstract
This literature review presents the analysis of different techniques for approaches and cerebral and cardiac protection in surgical correction of coarctation of the aorta (CoA) with tubular aortic arch hypoplasia. Various definitions of tubular hypoplasia are reviewed. The attempt is made to bring together theoretical basis and data concerning the results of particular methods. The authors investigate up-to-date literature data based on results using thoracotomy and sternotomy approaches in CoA correction with tubular aortic arch hypoplasia. Literature results of operations using these approaches and authors' rival opinions for different methods are presented. The impact of hypothermia and its physiological effects on the brain and the late neurological outcomes of deep hypothermic circulatory arrest are discussed. Advantages and disadvantages of deep hypothermic circulatory arrest and selective cerebral perfusion and authors' opposite opinions on these techniques are presented. The methods of selective cerebral perfusion control and strategies to assess its adequacy are briefly described. Coronary perfusion peculiarities, hypothermic cardioplegia effects on the myocardium, and disadvantages of hyperkalemic cardioplegia are summarized. Based on literature data, the authors justify the implementation of selective coronary perfusion for the correction of CoA with tubular aortic arch hypoplasia.
About the Authors
D. A. BodrovRussian Federation
Dmitry A. Bodrov - Cardiac Surgeon, Department of Pediatric Cardiac Surgery.
185, Volgogradskaya str., Ekaterinburg, 620102
K. B. Kazantsev
Russian Federation
Konstantin B. Kazantsev - Cand. Sci. (Med.), Head of Department of Pediatric Cardiac Surgery.
185, Volgogradskaya str., Ekaterinburg, 620102
E. M. Idov
Russian Federation
Eduard M. Idov - Dr. Sci. (Med.), Professor, Head of Department of Cardiac Surgery.
185, Volgogradskaya str., Ekaterinburg, 620102; 3, Repina str., Ekaterinburg, 620028
A. V. Mikhailov
Russian Federation
Alexander V. Mikhailov - Dr. Sci. (Med.), Professor, Cardiac Surgeon, Department of Cardiac Surgery.
185, Volgogradskaya str., Ekaterinburg, 620102
A. I. Svalov
Russian Federation
Alexey I. Svalov - Cand. Sci. (Med.), Head of Department of Pediatric Anesthesiology and Reanimatology.
185, Volgogradskaya str., Ekaterinburg, 620102
References
1. Ilyinov V.N., Krivoshchekov E.V., Shipulin VM. Surgical treatment of coarctation of the aorta with hypoplastic aortic arch. The Siberian Medical Journal. 2014;29(3):80-85 (In Russ.). DOI: 10.29001/2073-8552-2014-29-3-80-86.
2. Edwards J.E., Christensen N.A., Clagett O.T., McDonald J.R. Pathologic considerations in coarctation of the aorta. Proc. Staff Meet. Mayo Clin. 1948;23:324.
3. Moulaert A.J., Bruins C.C., Oppenheimer-Dekker A. Anomalies of the aortic arch and ventricular septal defects. Circulation. 1976;53:1011-1015. DOI: 10.1161/01.cir.53.6.1011.
4. Celoria G.C., Patton R.B. Congenital absence of the aortic arch. Am. Heart J. 1959;58:407-413. DOI: 10.1016/0002-8703(59)90157-7.
5. Rudolph A.M., Heymann M.A., Spitznas U. Hemodynamic considerations in the development of narrowing of the aorta. Am. J. Cardiol. 1972;30:514-525. DOI: 10.1016/0002-9149(72)90042-2.
6. Langley S.M., Sunstrom R.E., Reed R.D., Rekito A.J., Gerrah R. The neonatal hypoplastic aortic arch:decisions and more decisions. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2013;16(3):43-51. DOI: 10.1053/j.pcsu.2013.01.008.
7. Karl T.R., Sano S., Brawn W., Mee R.B. Repair of hypoplastic or interrupted aortic arch via sternotomy. J. Thorac. Cardiovasc. Surg. 1992;104(3):688-695.
8. Sakurai T., Stickley J., Stumper O., Khan N., Jones T.J., Barron D.J. et al. Repair of isolated aortic coarctation over two decades: impact of surgical approach and associated arch hypoplasia. Interact. Cardiovasc. Thorac. Surg. 2012;15(5): 865-870. DOI: 10.1093/icvts/ivs265.
9. Elgamal M.A., McKenzie E.D., Fraser C.D. Jr. Aortic arch advancement: the optimal one-stage approach for surgical management of neonatal coarctation with arch hypoplasia. Ann. Thorac. Surg. 2002;73:1267-1272. DOI: 10.1016/s0003-4975(01)03622-0.
10. Kotani Y, Anggriawan S., Chetan D., Zhao L., Liyanage N., Saedi A. et al. Fate of the hypoplastic proximal aortic arch in infants undergoing repair for coarctation of the aorta through a left thoracotomy. Ann. Thorac. Surg. 2014;98(4):1386-1393. DOI: 10.1016/j.athorac-sur.2014.05.042.
11. Pettersen M.D., Du W., Skeens M.E., Humes R.A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J. Am. Soc. Echocardiogr. 2008;21(8):922-934. DOI: 10.1016/j.echo.2008.02.006.
12. Wade O.L., Bishop J.M. Cardiac output and regional blood flow. Oxford: Blackwell Scientific Publications Ltd.; 1962:65.
13. Clarke D.D., Sokoloff L. Circulation and energy metabolism of the brain. In: Siegel G.J. Basic neurochemistry molecular, cellular, and medical aspects. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 1999:637-670.
14. Michenfelder J.D., Milde J.H. The effect of profound levels of hypothermia (below 14 degrees C) on canine cerebral metabolism. J Cereb. Blood Flow Metab. 1992;12(5):877-880. DOI: 10.1038/jcb-fm.1992.120.
15. Wass C.T., Lanier W.L., Hofer R.E., Scheithauer B.W., Andrews A.G. Temperature changes of > or = 1 degree C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology. 1995;83(2):325-335. DOI: 10.1097/00000542-199508000-00013.
16. Hagerdal M., Harp J., Nilsson L., Siesjo B.K. The effect of induced hypothermia upon oxygen consumption in the rat brain. J. Neurochem. 1975;24:311-316. DOI: 10.1111/j.1471-4159.1975.tb11881.x.
17. Karas'kov A.M., Litasova E.E., Vlasov A.Yu. Ocherk zhizni i deyatel'nosti Evgeniya Nikolaevicha Meshalkina. Patologiya Krovoobrashheniya i Kardiokhirurgiya. 1999;1:4-11 (In Russ.).
18. Gonzalez-Ibarra F.P., Varon J., Lopez-Meza E.G. Therapeutic hypothermia: critical review of the molecular mechanisms of action. Front. Neurol. 2011;2:4. DOI: 10.3389/fneur.2011.00004.
19. Erecinska M., Thoresen M., Silver I.A. Effects of hypothermia on energy metabolism in Mammalian central nervous system. J. Cereb. Blood Flow Metab. 2003;23(5):513-530. DOI: 10.1097/01.WCB.0000066287.21705.21.
20. Yenari M., Kitagawa K., Lyden P., Perez-Pinzon M. Metabolic downregu-lation: a key to successful neuroprotection? Stroke. 2008;39(10):2910-2917. DOI: 10.1161/STROKEAHA.108.514471.
21. Lassen N.A. Autoregulation of cerebral blood flow. Circ. Res. 1964;15:201-204.
22. Joshi B., Brady K., Lee J., Easley B., Panigrahi R., Smielewski P. et al. Impaired autoregulation of cerebral blood flow during rewarming from hypothermic cardiopulmonary bypass and its potential association with stroke. Anesthesia&Analgesia. 2010;110(2):321-328. DOI: 10.1213/ANE.0b013e3181c6fd12.
23. Ono M., Joshi B., Brady K., Easley R.B., Zheng Y, Brown C. et al. Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke. BJA. 2012;109(3):391-398. DOI: 10.1093/bja/aes148.
24. Ono M., Brown C., Lee J.K., Gottesman R.F., Kraut M., Black J. et al. Cerebral blood flow autoregulation is preserved after hypothermic circulatory arrest. Ann. Thorac. Surg. 2013;96(6):2045. DOI: 10.1016/j.athoracsur.2013.07.086.
25. Whittaker C.L., Grist G.E. The theoretical prediction of safe deep hypothermic circulatory arrest (DHCA) time using estimated tissue oxygen loading. Prog. Pediatr. Cardiol. 2008;24:117-122. DOI: 10.1016/j.ppedcard.2007.10.007.
26. Kirklin J.W., Barratt-Boyes B.G. Hypothermia, circulatory arrest, and cardiopulmonary bypass. Cardiac. Surgery. Second ed. New York: Churchill Livingstone; 1993:61-127.
27. McCullough J.N., Zhang N., Reich D.L., Juvonen T.S., Klein J.J., Spiel-vogel D. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann. Thorac. Surg. 1999;67:1895-1899. DOI: 10.1016/S0003-4975(99)00441-5.
28. Coselli J.S., Crawford E.S., Beall A.C. Jr., Mizrahi E.M., Hess K.R., Patel V.M. Determination of brain temperatures for safe circulatory arrest during cardiovascular operation. Ann. Thorac. Surg. 1988;45(6):638-642. DOI: 10.1016/S0003-4975(10)64766-2.
29. Wypij D., Newburger J.W., Rappaport L.A., du Plessis A.J., Jonas R.A., Wernovsky G. et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J. Thorac. Cardiovasc. Surg. 2003;126(5):1397-1403. DOI: 10.1016/s0022-5223(03)00940-1.
30. Pigula F.A., Siewers R.D., Nemoto E.M. Regional perfusion of the brain during neonatal aortic arch reconstruction. J. Thorac. Cardiovasc. Surg. 1999;117:1023-1024. DOI: 10.1016/S0022-5223(99)70387-9.
31. Pigula F.A., Nemoto E.M., Griffith B.P., Siewers R.D. Regional low-flow perfusion provides cerebral circulatory support during neonatal aortic arch reconstruction. J. Thorac. Cardiovasc. Surg. 2000;119:331-339. DOI: 10.1016/S0022-5223(00)70189-9.
32. Fraser C.D. Jr., Andropoulos D.B. Principles of antegrade cerebral perfusion during arch reconstruction in newborns/infants. Semin. Tho-rac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2008:61-68. DOI: 10.1053/j.pcsu.2007.12.005.
33. Dent C.L., Spaeth J.P., Jones B.V., Schwartz S.M., Glauser T.A., Hallinan B. et al. Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion. J. Thorac. Car-diovasc. Surg. 2006;131:190-197. DOI: 10.1016/j.jtcvs.2005.10.003.
34. Mahle W.T., Tavani F., Zimmerman R.A., Nicolson S.C., Galli K.K., Gay-nor J.W. et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002;106(12):I109-I114.
35. Ziganshin B.A., Elefteriades J.A. Deep hypothermic circulatory arrest. Ann. Cardiothorac. Surg. 2013;2(3):303-315. DOI: 10.3978/j.issn.2225-319X.2013.01.05.
36. Messer J.V., Wagman R.J., Levine H.J., Neill W.A., Krasnow N., Gorlin R. Patterns of human myocardial oxygen extraction during rest and exercise. J. Clin. Invest. 1962;41(4):725-742. DOI: 10.1172/JCI104531.
37. Stouffer G.A. Cardiovascular hemodynamics for the clinician. Massachusetts: Blackwell Publishing; 2008:233-235.
38. Dobson G.P., Faggian G., Onorati F., Vinten-Johansen J. Hyperkalemic cardioplegia for adult and pediatric surgery: end of an era? Front. Physiol. 2013;4:228. DOI: 10.3389/fphys.2013.00228.
39. Piper H.M., Meuter K., Schafer C. Cellular mechanisms of ischemia-reperfusion injury. Ann. Thorac. Surg. 2003;75:S644-S648. DOI: 10.1016/S0003-4975(02)04686-6.
40. Piper H.M., Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res. 2004;61:365-371. DOI: 10.1016/j.cardiores.2003.12.012.
41. Cannon R.O. Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. 2005;2:88-94. DOI: 10.1038/ncpcardio0096.
42. Vinten-Johansen J., Zhao Z.Q., Jiang R., Zatta A.J., Dobson G.P. Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. J. Appl. Physiol. 2007;103:1441-1448. DOI: 10.1152/japplphysiol.00642.2007.
43. Vinten-Johansen J., Nakanishi K. Postcardioplegia acute cardiac dysfunction and reperfusion injury. J. Cardiothorac. Vasc. Anesth. 1993;7:6-18. DOI: 10.1016/1053-0770(93)90092-Y.
44. Rudd D.M., Dobson G.P. Early reperfusion with warm, polarizing adenosine-lidocaine cardioplegia improves functional recovery following 6 hours of cold static storage. J. Thorac. Cardiovasc. Surg. 2011;141:1044-1055. DOI: 10.1016/j.jtcvs.2010.04.040.
45. Anselmi A., Abbate A., Girola F., Nasso G., Biondi-Zoccai G.G., Possati G. et al. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence. Eur. J. Cardiothorac. Surg. 2004;25:304-311. DOI: 10.1016/j.ejcts.2003.12.003.
46. Anselmi A., Possati G., Gaudino M. Postoperative inflammatory reaction and atrial fibrillation: simple correlation or causation? Ann. Tho-rac. Surg. 2009;88:326-333. DOI: 10.1016/j.athoracsur.2009.01.031.
47. Ruel M., Khan T.A., Voisine P., Bianchi C., Sellke F.W. Vasomotor dysfunction after cardiac surgery. Eur. J. Cardiothorac. Surg. 2004;26:1002-1014. DOI: 10.1016/j.ejcts.2004.07.040.
48. Nomura F., Forbess J. M., Hiramatsu T., Mayer J.E. Relationship of blood flow effects of adenosine during reperfusion to recovery of ventricular function after hypothermic ischemia in neonatal lambs. Circulation. 1997;96:227-232.
49. Ellis R.J., Mavroudis C., Gardner C., Turley K., Ullyot D., Ebert P.A. Relationship between atrioventricular arrhythmias and the concentration of K+ ion in cardioplegic solution. J. Thorac. Cardiovasc. Surg. 1980;80:517-526.
50. Taggart P., Sutton P.M., Opthof T., Coronel R., Trimlett R., Pugsley W. et al. Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J. Mol. Cell. Cardiol. 2000;32:621-630. DOI: 10.1006/jmcc.2000.1105.
51. Bernhard W.F., Schwarz H.F., Mallick N.P. Elective hypothermic cardiac arrest in normothermic animals. Ann. Surg. 1961;153(1):43-51. DOI: 10.1097/00000658-196101000-00005.
52. Durandy Y. Rationale for implementation of warm cardiac surgery in pediatrics. Front. Pediatr. 2016;4:43. DOI: 10.3389/fped.2016.00043.
Review
For citations:
Bodrov D.A., Kazantsev K.B., Idov E.M., Mikhailov A.V., Svalov A.I. Selective cerebral and coronary perfusion in the correction of coarctation of the aorta with tubular aortic arch hypoplasia (literature review). Siberian Journal of Clinical and Experimental Medicine. 2019;34(4):83-90. (In Russ.) https://doi.org/10.29001/2073-8552-2019-34-4-83-90