Preview

Siberian Journal of Clinical and Experimental Medicine

Advanced search

The role of proinflammatory cytokines in the development of anthracycline-induced heart failure

https://doi.org/10.29001/2073-8552-2020-35-2-66-74

Abstract

Objective. To study the pathogenetic and prognostic role of cytokines (tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)) in the development of anthracycline-induced chronic heart failure (CHF).

Material and Methods. A total of 176 women with breast cancer who received anthracycline antibiotics as a part of polychemotherapy regimens were examined. Upon examination, the patients in remission were divided into two groups within 12 months after the completion of chemotherapy: patients with the development of cardiotoxic remodeling (group 1, n = 52) and women with preserved cardiac function (group 2, n = 124). All patients received echocardiography study before, during, and after chemotherapy. Biochemical blood tests were done to determine the levels of TNF-α and IL-1β before chemotherapy, immediately after it, and 12 months after chemotherapy completion. Determination of polymorphisms of the TNF-α (–308G/A, rs1800629) and IL-1β genes (+3953, rs1143634) was carried out by polymerization chain reaction.

Results. A higher level of TNF-α and IL-1β in group 1 was associated with the development of heart failure 12 months after the end of chemotherapy. The level of TNF-α over 7.5 pg/mL after the completion of chemotherapy allowed to predict the development of cardiovascular complications in women receiving anthracycline therapy with sensitivity of 44.2% and specificity of 75.8% (AUS = 0.600; 95% CI = 0.524–0.673; p = 0.035). The study did not reveal any significant differences in the frequency distribution for genotypes of 308G/A polymorphism (rs1800629) of the TNF-α gene and +3953 (rs1143634) polymorphism of the IL-1β gene in the studied groups.

Conclusion. Patients with breast cancer who developed anthracycline-induced heart failure 12 months after the end of chemotherapy had the increased levels of TNF-α and IL-1β suggesting the pathogenetic role of proinflammatory cytokines in the development of cardiac injury during anthracycline therapy. 

About the Authors

A. T. Teplyakov
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Dr. Sci. (Med.), Professor, Honored Scientist of the Russian Federation, Chief Research Scientist,

111a, Kievskaya str., Tomsk, 634012



S. N. Shilov
Novosibirsk State Medical University
Russian Federation

Dr. Sci. (Med.), Associate Professor, Department of Pathological Physiology and Clinical Pathophysiology,

52, Krasniy pr., Novosibirsk, 630091



A. A. Popova
Novosibirsk State Medical University
Russian Federation

Dr. Sci. (Med.), Head of the Department of Policlinic Therapy and General Medical Practice,

52, Krasniy pr., Novosibirsk, 630091



E. N. Berezikova
Novosibirsk State Medical University
Russian Federation

Dr. Sci. (Med.), Assistant Professor, Department of Policlinic Therapy and General Medical Practice,

52, Krasniy pr., Novosibirsk, 630091



E. V. Grakova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Dr. Sci. (Med.), Leading Research Scientist, Cardiology Research Institute,

111a, Kievskaya str., Tomsk, 634012



M. N. Neupokoeva
Novosibirsk State Medical University
Russian Federation

Assistant Professor, Department of Policlinic Therapy and General Medical Practice,

52, Krasniy pr., Novosibirsk, 630091



K. V. Kopeva
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Cand. Sci. (Med.), Junior Research Scientist, Cardiology Research Institute,

111a, Kievskaya str., Tomsk, 634012



E. T. Ratushnyak
State Novosibirsk Regional Medical and Physical Education Dispensary
Russian Federation

Sports Medicine Doctor,

3а, Gogol str., Novosibirsk, 630091



E. I. Stepachev
Novosibirsk State Medical University
Russian Federation

Student, Faculty of Medicine,

52, Krasniy pr., Novosibirsk, 630091



References

1. DeSantis C.E., Lin C.C., Mariotto A.B., Siegel R.L., Stein K.D., Kramer J.L. et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin. 2014;64(4):252–271. DOI: 10.3322/caac.21235.

2. Force T., Kolaja K.L. Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug. Discov. 2011;10(2):111–126. DOI: 10.1038/nrd3252.

3. Vasyuk Yu.A., Shkolnik E.L., Nesterov V.V. Shkolnik L.D., Varlan G.V. Cardiooncology: Current aspects of prevention of anthracycline toxicity. Kardiologiia. 2016;56(12):72–79 (In Russ.). DOI: 10.18565/cardio.2016.12.72-79.

4. Zamorano J.L., Lancellotti P., Munoz D. R., Aboyans V., Asteggiano R., Galderisi M. et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart. J. 2016;37(36):2768–2801. DOI: 10.1093/eurheartj/ehw211.

5. Almuwaqqat Z., Meisel J.L., Barac A., Parashar S. Breast cancer and heart failure. Heart Fail. Clin. 2019;15(1):65–75. DOI: 10.1016/j.hfc.2018.08.007.

6. Teplyakov A.T., Shilov S.N., Popova A.A. Grakova E.V., Berezikova E.N., Neupokoeva M.N. et al. The cardiovascular system in patients with anthracycline cardiomiopathy. Bulletin of Siberian Medicine. 2017;16(3):127– 136 (In Russ.). DOI: 10.20538/1682-0363-2017-3-127–136.

7. Siegel R., DeSantis C., Virgo K., Stein K., Mariotto A., Smith T. et al. Cancer treatment and survivorship statistics, 2012. CA Cancer. J. Clin. 2012;62(4):220–241. DOI: 10.3322/caac.21149.

8. Ning Y., Shen Q., Herrick K., Mikkelsen R., Anscher M., Houlihan R. et al. Abstract LB-39: Cause of death in cancer survivors. Cancer Research. 2012;72(8):LB-339-LB-339. DOI:10.1158/1538-7445.AM2012-LB-339.

9. Yndestad A., Damas J.K., Oie E., Ueland T., Gullestad L., Aukrust P. Role of inflammation in the progression of heart failure. Curr. Cardiol. Rep. 2007;9(3):236–241. DOI: 10.1007/bf02938356.

10. Von Haehling S., Jankowska E.A., Anker S.D. Tumor necrosis factor-alpha and the failing heart: Pathophysiology and therapeutic implications. Basic Res. Cardiol. 2004;99(1):18–28. DOI: 10.1007/s00395-003-0433-8.

11. Mantovani A., Dinarello C.A., Molgora M., Garlanda C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity. 2019;50(4):778–795. DOI: 10.1016/j.immuni.2019.03.012.

12. Latkovskis G., Licis N., Kalnins U. C-reactive protein levels and common polymorphisms of the interleukin-1 gene cluster and interleukin-6 gene in patients with coronary heart disease. Eur. J. Immunogenet. 2004;31(5):207–213. DOI: 10.1111/j.1365-2370.2004.00476.x.

13. Wilson A.G., Symons J.A., McDowell T.L., McDevitt H.O., Duff G.W. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. PNAS. 1997;94(7):3195–3199. DOI: 10.1073/pnas.94.7.3195.

14. Schubert C., Hong S., Natarajan L., Mills P.J., Dimsdale J.E. The association between fatigue and inflammatory marker levels in cancer patients: A quantitative review. Brain, Behavior, and Immunity. 2007;21(4):413–427. DOI: 10.1016/j.bbi.2006.11.004.

15. Chiosi E., Spina A., Sorrentino A., Romano M., Sorvillo L., Senatore G. et al. Change in TNF-alpha receptor expression is a relevant event in doxorubicin-induced H9c2 cardiomyocyte cell death. J. Interferon Cytokine Res. 2007;27(7):589–597. DOI: 10.1089/jir.2006.0161.

16. Chung W.B., Youn H.J. Pathophysiology and preventive strategies of anthracycline-induced cardiotoxicity. Korean J. Intern. Med. 2016;31(4):625– 633. DOI: 10.3904/kjim.2016.017.

17. Rochette L., Guenancia C., Gudjoncik A., Hachet O., Zeller M., Cottin Y. et al. Anthracyclines/trastuzumab: New aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol. Sci. 2015;36(6):326–348. DOI: 10.1016/j.tips.2015.03.005.

18. Salazar-Mendiguchía J., González-Costello J., Roca J., Ariza-Sole A., Manito N., Cequier A. Anthracycline-mediated cardiomyopathy: Basic molecular knowledge for the cardiologist. Arch. Cardiol. Mex. 2014;84(3):218–223. DOI: 10.1016/j.acmx.2013.08.006.

19. L’Ecuyer T., Sanjeev S., Thomas R., Novak R., Das L., Campbell W. et al. DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am. J. Physiol. Heart Circ. Physiol. 2006;291(3):1273–1280. DOI: 10.1152/ajpheart.00738.2005.

20. Octavia Y., Tocchetti C.G., Gabrielson K.L., Janssens S., Crijns H.J., Moens A.L. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol. 2012;52(6):1213– 1225. DOI: 10.1016/j.yjmcc.2012.03.006.

21. Levkau B., Schäfers M., Wohlschlaeger J., von Wnuck Lipinski K., Keul P., Hermann S. et al. Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation. 2008;117(12):1583–1593. DOI: 10.1161/CIRCULATIONAHA.107.734160.

22. Adamopoulos S., Parissis J.T., Georgiadis M., Karatzas D., Paraskevaidis J., Kroupis C. Growth hormone administration reduces circulating proinflammatory cytokines and soluble Fas/soluble Fas ligand system in patients with chronic heart failure secondary to idiopathic dilated cardiomyopathy. Am. Heart J. 2002;144(2):359–364. DOI: 10.1067/mhj.2002.124052.


Review

For citations:


Teplyakov A.T., Shilov S.N., Popova A.A., Berezikova E.N., Grakova E.V., Neupokoeva M.N., Kopeva K.V., Ratushnyak E.T., Stepachev E.I. The role of proinflammatory cytokines in the development of anthracycline-induced heart failure. Siberian Journal of Clinical and Experimental Medicine. 2020;35(2):66-74. (In Russ.) https://doi.org/10.29001/2073-8552-2020-35-2-66-74

Views: 818


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-2927 (Print)
ISSN 2713-265X (Online)