Гетерогенность эндотелия в контексте различной сосудистой патологии (обзор литературы)
https://doi.org/10.29001/2073-8552-2025-40-4-28-36
Аннотация
В аналитическом обзоре рассмотрены морфологические и функциональные аспекты гетерогенности эндотелия в зависимости от развития различной сосудистой патологии на примере атеросклероза (АС), тромбоза, артериальной гипертензии (АГ) и микроциркуляторной вазоспастической стенокардии. Среди универсальных механизмов дисфункции эндотелия (ДЭ) наиболее важными являются нарушение биосинтеза оксида азота (NO), дисрегуляция молекулярных механизмов механотрансдукции, эндотелиально-мезенхимальный переход, провоспалительная и протромботическая активация. Кроме того, сам процесс физиологического старения эндотелиальных клеток (ЭК) в виде повышения их проницаемости, ретенции липидов, адгезии и клеточной трансмиграции также имеет большое значение в патогенезе указанных заболеваний. С учетом современного состояния вопроса гетерогенности эндотелия кратко перечислены перспективные направления дальнейшего изучения его патофизиологии, включая разработки в области исследования транскриптома и протеома клеток атеропротективных кондуитов, используемых при коронарном шунтировании (КШ), молекулярно-клеточные аналогии между онкопатологией и АС.
Об авторах
А. В. ФроловРоссия
Фролов Алексей Витальевич, д-р мед. наук, сердечно-сосудистый хирург, старший научный сотрудник, лаборатория рентгенэндоваскулярной и реконструктивной хирургии сердца и сосудов, отдел хирургии сердца и сосудов, НИИ КПССЗ.
650002, Кемерово, бульвар имени академика Л.С. Барбараша, стр. 6
Д. К. Шишкова
Россия
Шишкова Дарья Кирилловна - канд. биол. наук, заведующий лабораторией молекулярной, трансляционной и цифровой медицины, отдел экспериментальной медицины, НИИ КПССЗ.
650002, Кемерово, бульвар имени академика Л.С. Барбараша, стр. 6
А. Г. Кутихин
Россия
Кутихин Антон Геннадьевич - д-р мед. наук, заведующий отделом экспериментальной медицины, НИИ КПССЗ.
650002, Кемерово, бульвар имени академика Л.С. Барбараша, стр. 6
Список литературы
1. Васина Л.В., Власов Т.Д., Петрищев Н.Н. Функциональная гетерогенность эндотелия (обзор). Артериальная гипертензия. 2017;23(2):88–102. https://doi.org/10.18705/1607419X-2017-23-2-88-102
2. Кутихин А.Г., Шишкова Д.К., Великанова Е.А., Синицкий М.Ю., Синицкая А.В., Маркова В.Е. Патофизиологические подходы к изучению дисфункции эндотелия и методологические аспекты определения ее критериев в контексте моделирования гистогематического барьера. Рос. физиолог. журн. им. И.М. Сеченова. 2022;108(5):594– 625. https://doi.org/10.31857/S0869813922050077
3. Фролов А.В. Морфофункциональная система кондуит-артерия: клинико-патофизиологическая концепция как основа эффективности аутоартериального коронарного шунтирования: дисс. … док. мед. наук. Кемерово, 2023: 388.
4. Tüysüz M. E., Leyla Bahar L. Role of urotensin-II in saphenous vein graft disease. Braz. J. Cardiovasc. Surg. 2020;35(5):675–682. https://doi.org/10.21470/1678-9741-2019-0470
5. Krüger-Genge A., Blocki A., Franke R.-P., Jung F. Vascular endothelial cell biology: An update. Int. J. Mol. Sci. 2019;20:4411. https://doi.org/10.3390/ijms20184411
6. Wolfa K., Hua H., Isajia T., Dardik A. Molecular identity of arteries, veins and lymphatics. J. Vasc. Surg. 2019;69(1):253–262. https://doi.org/10.1016/j.jvs.2018.06.195
7. Ratajska A., Jankowska-Steifer E., Czarnowska E., Olkowski R., Gula G., Niderla-Bielińska J. et al. Vasculogenesis and its cellular therapeutic applications. Cells Tissues Organs. 2017;203(3):141–152. https://doi.org/10.1159/000448551
8. Wagner W.H., Henderson R.M., Hicks H.E., Banes A.J., Johnson G. Differences in morphology, growth rate, and protein synthesis between cultured arterial and venous endothelial cells. J. Vasc. Surg. 1988;8:509– 519
9. Lau S., Gossen M., Lendlein A., Jung F. Venous and arterial endothelial cells from human umbilical cords: Potential cell sources for cardiovascular research. Int. J. Mol. Sci. 2021;22:978. https://doi.org/10.3390/ijms22020978
10. Simionescu M., Simionescu N., Palade G.E. Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. J. Cell. Biol. 1976;68(3):705–723. https://doi.org/10.1083/jcb.68.3.705
11. Parry E.W., Abramovich D.R. The ultrastructure of human umbilical vessel endothelium from early pregnancy to full term. J. Anat. 1972;111(Pt_1):29–42.
12. Yang H., Yu P. K., Cringle S.J., Sun X., Yu D.-Y. Microvascular network and its endothelial cells in the human iris. Current Eye Research. 2018;43(1):67–76. https://doi.org/10.1080/02713683.2017.1379544
13. Rojas M.G., Pereira-Simon S., Zigmond Z.M., Varona Santos J., Perla M., Santos Falcon N. et al. Single-cell analyses offer insights into the different remodeling programs of arteries and veins. Cells. 2024;13:793. https://doi.org/10.3390/cells13100793
14. Aydin S., Aydin S., Nesimi Eren M., Sahin I., Yilmaz M., Kalayci M., Gungor O. The cardiovascular system and the biochemistry of grafts used in heart surgery. Springerplus. 2013;16;2(1):612. https://doi.org/10.1186/2193-1801-2-612
15. Simmons G.H., Padilla J., Laughlin M.H. Heterogeneity of endothelial cell phenotype within and amongst conduit vessels of the swine vasculature. Exp. Physiol. 2012;97(9):1074–1082. https://doi.org/10.1113/expphysiol.2011.064006
16. Richardson M.R., Lai X., Witzmann F.A., Yoder M.C. Venous and arterial endothelial proteomics: mining for markers and mechanisms of endothelial diversity. Expert Rev. Proteomics. 2010;7(6):823–831. https://doi.org/10.1586/epr.10.92
17. Gierig M., Tragoudas A., Haverich A., Wriggers P. Mechano-chemobiological model of atherosclerosis formation based on the outside-in theory. Biomech. Model. Mechanobiol. 2024;23(2):539–552. https://doi.org/10.1007/s10237-023-01790-7
18. Jovin D.G., Sumpio B.E., Greif D.M. Manifestations of human atherosclerosis across vascular beds. JVS-Vascular Insights. 2024;2:100089 https://doi.org/10.1016/j.jvsvi.2024.100089
19. Kayashima Y., Maeda-Smithies N. Atherosclerosis in different vascular locations unbiasedly approached with mouse genetics. Genes. 2020;11:1427. https://doi.org/10.3390/genes11121427
20. VanderLaan P.A., Reardon C.A., Getz G.S. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler. Thromb. Vasc. Biol. 2004;24(1):12–22. https://doi.org/10.1161/01.ATV.0000105054.43931.f0
21. Kraler S., Libby P., Evans P.C., Akhmedov A., Schmiady M.O., Reinehr M. et al. Resilience of the internal mammary artery to atherogenesis: shifting from risk to resistance to address unmet needs. Arterioscler. Thromb. Vasc. Biol. 2021;41(8):2237–2251. https://doi.org/10.1161/ATVBAHA.121.316256
22. Sluiter T.J., van Buul J.D., Huveneers S., Quax P.H.A., de Vries M.R. Endothelial barrier function and leukocyte transmigration in atherosclerosis. Biomedicines. 2021;24:9(4):328. https://doi.org/10.3390/biomedicines9040328
23. Yamaguchi T., Morino K. Perivascular mechanical environment: A narrative review of the role of externally applied mechanical force in the pathogenesis of atherosclerosis. Front. Cardiovasc. Med. 2022;19(9):944356. https://doi.org/10.3389/fcvm.2022.944356
24. Nappi F., Bellomo F., Nappi P., Chello C., Iervolino A., Chello M. et al. The use of radial artery for CABG: An update. Biomed. Res. Int. 2021;7:5528006. https://doi.org/10.1155/2021/5528006
25. Brown P.A. Genes differentially expressed across major arteries are enriched in endothelial dysfunction-related gene sets: Implications for relative inter-artery atherosclerosis risk. Bioinform. Biol. Insights. 2024;16(18):11779322241251563. https://doi.org/10.1177/1177932224125156
26. Aono J., Ikeda S., Katsumata Y., Higashi H., Ohshima K., Ishibashi K. et al. Correlation between plaque vulnerability of aorta and coronary artery: an evaluation of plaque activity by direct visualization with angioscopy. Int. J. Cardiovasc. Imaging. 2015;31(6):1107–1114. https://doi.org/10.1007/s10554-015-0669-z
27. Groten S.A., Smit E.R., van den Biggelaar M., Hoogendijk A.J. The proteomic landscape of in vitro cultured endothelial cells across vascular beds. Commun. Biol. 2024;7(1):989. https://doi.org/10.1038/s42003024-06649-w
28. Boutagy N.E., Gamez-Mendez A., Fowler J.W., Zhang H., Chaube B.K., Esplugues E. et al. Dynamic metabolism of endothelial triglycerides protects against atherosclerosis in mice. J. Clin. Invest. 2024;134(4):e170453. https://doi.org/10.1172/JCI170453
29. Власов Т.Д., Яшин С.М. Артериальные и венозные тромбозы. Всегда ли применима триада Вирхова? Регионарное кровообращение и микроциркуляция. 2022;21(1):78–86. https://doi.org/10.24884/16826655-2022-21-1-78-86
30. Chernysh I.N., Nagaswami C., Kosolapova S., Peshkova A.D., Cuker A., Cines D.B. et al. The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli. Sci. Rep. 2020;10(1):5112. https://doi.org/10.1038/s41598-020-59526-x
31. Koupenova M., Kehrel B.E., Corkrey H.A., Freedman J.E. Thrombosis and platelets: an update. Eur. Heart J. 2017;38(11):785–791. https://doi.org/10.1093/eurheartj/ehw550
32. Severino P., D'Amato A., Prosperi S., Myftari V., Colombo L., Tomarelli E. et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA): Focus on coronary microvascular dysfunction and genetic susceptibility. J. Clin. Med. 2023;12(10):3586. https://doi.org/10.3390/jcm12103586
33. Mackman N. New insights into the mechanisms of venous thrombosis. J. Clin. Invest. 2012;122(7):2331–2336. https://doi.org/10.1172/JCI60229
34. Yau J.W., Teoh H., Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 2015;15:130. https://doi.org/10.1186/s12872-0150124-z
35. Laszik Z., Mitro A., Taylor F.B. Jr., Ferrell G., Esmon C.T. Human protein C receptor is present primarily on endothelium of large blood vessels: implications for the control of the protein C pathway. Circulation. 1997;96(10):3633–3640. https://doi.org/10.1161/01.cir.96.10.3633
36. Kawanami O., Jin E., Ghazizadeh M., Fujiwara M., Jiang L., Nagashima M. et al. Heterogeneous distribution of thrombomodulin and von Willebrand factor in endothelial cells in the human pulmonary microvessels. J. Nippon. Med. Sch. 2000;67(2):118–125. https://doi.org/10.1272/jnms.67.118
37. van Veelen A., van der Sangen N.M.R., Henriques J.P.S., Claessen B.E.P.M. Identification and treatment of the vulnerable coronary plaque. Rev. Cardiovasc. Med. 2022;23(1):39. https://doi.org/10.31083/j.rcm2301039
38. Ambrose J.A., Bhullar A.S. Inflammation and thrombosis in coronary atherosclerosis: Pathophysiologic mechanisms and clinical correlations. EMJ. 2019;4(1):71–78. https://doi.org/10.33590/emj/10314648
39. Cheng Y., Wu A., Ying M., Chen X. The updated roles of new ultrasound imaging techniques in assessing carotid vulnerable plaques. WFUMB Ultrasound Open. 2023;1:100023. https://doi.org/10.1016/j.wfumbo.2023.100023
40. Olinic D.M., Stanek A., Tătaru D.A., Homorodean C., Olinic M. Acute limb ischemia: An update on diagnosis and management. J. Clin. Med. 2019;8(8):1215. https://doi.org/10.3390/jcm8081215
41. Chi J.-T., Chang H.Y., Haraldsen G., Jahnsen F.L., Troyanskaya O.G., Chang D.S. et al. Endothelial cell diversity revealed by global expression profiling. PNAS. 2003;100(19):10623–10628. https://doi.org/10.1073/pnas.1434429100
42. Kong P., Cui Z.Y., Huang X.F., Zhang D.D., Guo R.J., Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target Ther. 2022;7(1):131. https://doi.org/10.1038/s41392-022-00955-7
43. Lee R.M., Dickhout J.G., Sandow S.L. Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens. Res. 2017;40(4):311–323. https://doi.org/10.1038/hr.2016.145
44. Thorin E., Shreeve S.M. Heterogeneity of vascular endothelial cells in normal and disease states. Pharmacol. Ther. 1998;78(3):155–166. https://doi.org/10.1016/s0163-7258(98)00005-9
45. Hwang D., Park S.H., Koo B.K. Ischemia with nonobstructive coronary artery disease: Concept, assessment, and management. JACC Asia. 2023;3(2):169–184. https://doi.org/10.1016/j.jacasi.2023.01.004
46. Bradley C.P., Berry C. Microvascular arterial disease of the brain and the heart: a shared pathogenesis. QJM. 2023;116(10):829–834. https://doi.org/10.1093/qjmed/hcad158
47. Jekell A., Kalani M., Kahan T. The interrelation of endothelial function and microvascular reactivity in different vascular beds, and risk assessment in hypertension: results from the Doxazosin-ramipril study. Heart Vessels. 2019;34(3):484–495. https://doi.org/10.1007/s00380018-1265-7
48. The Athero-Resilience Project: Systems Approaches for the Discovery of Atheroprotective Targets. Universität Zürich: электронный ресурс. URL: https://www.cmc.uzh.ch/en/atheroresilience.html (12.03.2025).
49. Sabik J.F. 3rd, Mehaffey J.H., Badhwar V., Ruel M., Myers P.O., Sandner S. et al. Multiarterial vs single-arterial coronary surgery: 10-year follow-up of 1 million patients. Ann. Thorac. Surg. 2024;117(4):780–788. https://doi.org/10.1016/j.athoracsur.2024.01.008
50. Gallucci G., Turazza F.M., Inno A., Canale M.L., Silvestris N., Farì R. et al. Atherosclerosis and the bidirectional relationship between cancer and cardiovascular disease: From bench to bedside-part 1. Int. J. Mol. Sci. 2024;25(8):4232. https://doi.org/10.3390/ijms25084232
Рецензия
Для цитирования:
Фролов А.В., Шишкова Д.К., Кутихин А.Г. Гетерогенность эндотелия в контексте различной сосудистой патологии (обзор литературы). Сибирский журнал клинической и экспериментальной медицины. 2025;40(4):28-36. https://doi.org/10.29001/2073-8552-2025-40-4-28-36
For citation:
Frolov A.V., Shishkova D.K., Kutikhin A.G. Context-specific endothelial heterogeneity (literature review). Siberian Journal of Clinical and Experimental Medicine. 2025;40(4):28-36. (In Russ.) https://doi.org/10.29001/2073-8552-2025-40-4-28-36
JATS XML


.png)

























